File size: 712 Bytes
f6f725c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
import gradio as grad
import ast

# First, the RoBERTa base model is used, fine-tuned using the SQuAD 2.0 dataset. 
# It’s been trained on question-answer pairs, including unanswerable questions, for the task of question and answering.
mdl_name = "deepset/roberta-base-squad2"
my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)

def answer_question(question,context):
    text= "{"+"'question': '"+question+"','context': '"+context+"'}"
    di=ast.literal_eval(text)
    response = my_pipeline(di)
    return response

grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()