Spaces:
Runtime error
Runtime error
File size: 33,506 Bytes
753fd9a 7b976bf 753fd9a 7b976bf 753fd9a 0d2dc80 753fd9a 5fb530c 753fd9a 6276e10 dc81e88 753fd9a 4656d32 e9f3fa1 753fd9a 7c170d0 753fd9a 3cd5df9 753fd9a eb37a1f 753fd9a eb37a1f 753fd9a eb37a1f dc81e88 eb37a1f 36c86a9 eb37a1f dc81e88 eb37a1f dc81e88 eb37a1f bc8bb8d eb37a1f dc81e88 eb37a1f dc81e88 eb37a1f dc81e88 eb37a1f 753fd9a 7c170d0 3eb7d27 753fd9a 0d2dc80 753fd9a eb37a1f 0d2dc80 753fd9a eb37a1f 753fd9a 7c170d0 753fd9a 0d2dc80 eb37a1f 0d2dc80 753fd9a eb37a1f 77e56ae 432282c 0d2dc80 432282c bfb8d88 753fd9a c0e057b 753fd9a eb37a1f 753fd9a eb37a1f 753fd9a eb37a1f 753fd9a 4b24155 753fd9a eb37a1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
try:
# os.system("pip install --upgrade torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html")
os.system("pip install --upgrade torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/cu101/torch_stable.html")
except Exception as e:
print(e)
import argparse
import os.path
import json
import numpy as np
import pickle as pkl
import csv
from distutils.util import strtobool
import torch
from torch import nn
import torch.backends.cudnn
from torch.nn import DataParallel
from torch.utils.data import DataLoader
from collections import OrderedDict
import glob
from tqdm import tqdm
from dominate import document
from dominate.tags import *
from PIL import Image
from matplotlib import pyplot as plt
import trimesh
import cv2
import shutil
import random
from datetime import datetime
import gradio as gr
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
import torchvision.transforms as T
from pytorch3d.structures import Meshes
from pytorch3d.loss import mesh_edge_loss, mesh_laplacian_smoothing, mesh_normal_consistency
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'src'))
from combined_model.train_main_image_to_3d_wbr_withref import do_validation_epoch
from combined_model.model_shape_v7_withref_withgraphcnn import ModelImageTo3d_withshape_withproj
from configs.barc_cfg_defaults import get_cfg_defaults, update_cfg_global_with_yaml, get_cfg_global_updated
from lifting_to_3d.utils.geometry_utils import rot6d_to_rotmat, rotmat_to_rot6d
from stacked_hourglass.datasets.utils_dataset_selection import get_evaluation_dataset, get_sketchfab_evaluation_dataset, get_crop_evaluation_dataset, get_norm_dict, get_single_crop_dataset_from_image
from test_time_optimization.bite_inference_model_for_ttopt import BITEInferenceModel
from smal_pytorch.smal_model.smal_torch_new import SMAL
from configs.SMAL_configs import SMAL_MODEL_CONFIG
from smal_pytorch.renderer.differentiable_renderer import SilhRenderer
from test_time_optimization.utils.utils_ttopt import reset_loss_values, get_optimed_pose_with_glob
from combined_model.loss_utils.loss_utils import leg_sideway_error, leg_torsion_error, tail_sideway_error, tail_torsion_error, spine_torsion_error, spine_sideway_error
from combined_model.loss_utils.loss_utils_gc import LossGConMesh, calculate_plane_errors_batch
from combined_model.loss_utils.loss_arap import Arap_Loss
from combined_model.loss_utils.loss_laplacian_mesh_comparison import LaplacianCTF # (coarse to fine animal)
from graph_networks import graphcmr # .utils_mesh import Mesh
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints, save_input_image
random.seed(2)
print(
"torch: ", torch.__version__,
"\ntorchvision: ", torchvision.__version__,
)
def get_prediction(model, img_path_or_img, confidence=0.5):
"""
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
get_prediction
parameters:
- img_path - path of the input image
- confidence - threshold value for prediction score
method:
- Image is obtained from the image path
- the image is converted to image tensor using PyTorch's Transforms
- image is passed through the model to get the predictions
- class, box coordinates are obtained, but only prediction score > threshold
are chosen.
"""
if isinstance(img_path_or_img, str):
img = Image.open(img_path_or_img).convert('RGB')
else:
img = img_path_or_img
transform = T.Compose([T.ToTensor()])
img = transform(img)
pred = model([img])
# pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].numpy())]
pred_class = list(pred[0]['labels'].numpy())
pred_boxes = [[(int(i[0]), int(i[1])), (int(i[2]), int(i[3]))] for i in list(pred[0]['boxes'].detach().numpy())]
pred_score = list(pred[0]['scores'].detach().numpy())
try:
pred_t = [pred_score.index(x) for x in pred_score if x>confidence][-1]
pred_boxes = pred_boxes[:pred_t+1]
pred_class = pred_class[:pred_t+1]
return pred_boxes, pred_class, pred_score
except:
print('no bounding box with a score that is high enough found! -> work on full image')
return None, None, None
def detect_object(model, img_path_or_img, confidence=0.5, rect_th=2, text_size=0.5, text_th=1):
"""
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
object_detection_api
parameters:
- img_path_or_img - path of the input image
- confidence - threshold value for prediction score
- rect_th - thickness of bounding box
- text_size - size of the class label text
- text_th - thichness of the text
method:
- prediction is obtained from get_prediction method
- for each prediction, bounding box is drawn and text is written
with opencv
- the final image is displayed
"""
boxes, pred_cls, pred_scores = get_prediction(model, img_path_or_img, confidence)
if isinstance(img_path_or_img, str):
img = cv2.imread(img_path_or_img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
img = img_path_or_img
is_first = True
bbox = None
if boxes is not None:
for i in range(len(boxes)):
cls = pred_cls[i]
if cls == 18 and bbox is None:
cv2.rectangle(img, boxes[i][0], boxes[i][1],color=(0, 255, 0), thickness=rect_th)
# cv2.putText(img, pred_cls[i], boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
# cv2.putText(img, str(pred_scores[i]), boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
bbox = boxes[i]
return img, bbox
# -------------------------------------------------------------------------------------------------------------------- #
model_bbox = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
model_bbox.eval()
def run_bbox_inference(input_image):
# load configs
cfg = get_cfg_global_updated()
out_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples', 'test2.png')
img, bbox = detect_object(model=model_bbox, img_path_or_img=input_image, confidence=0.5)
# fig = plt.figure() # plt.figure(figsize=(20,30))
# plt.imsave(out_path, img)
return img, bbox
# -------------------------------------------------------------------------------------------------------------------- #
args_config = "refinement_cfg_test_withvertexwisegc_csaddnonflat.yaml"
# args_model_file_complete = "cvpr23_dm39dnnv3barcv2b_refwithgcpervertisflat0morestanding0/checkpoint.pth.tar"
args_model_file_complete = "cvpr23_dm39dnnv3barcv2b_refwithgcpervertisflat0morestanding0_forrelease_v0/checkpoint.pth.tar"
args_suffix = "ttopt_v0"
args_loss_weight_ttopt_path = "bite_loss_weights_ttopt.json"
args_workers = 12
# -------------------------------------------------------------------------------------------------------------------- #
# load configs
# step 1: load default configs
# step 2: load updates from .yaml file
path_config = os.path.join(get_cfg_defaults().barc_dir, 'src', 'configs', args_config)
update_cfg_global_with_yaml(path_config)
cfg = get_cfg_global_updated()
# define path to load the trained model
path_model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, args_model_file_complete)
# define and create paths to save results
out_sub_name = cfg.data.VAL_OPT + '_' + cfg.data.DATASET + '_' + args_suffix + '/'
root_out_path = os.path.join(os.path.dirname(path_model_file_complete).replace(cfg.paths.ROOT_CHECKPOINT_PATH, cfg.paths.ROOT_OUT_PATH + 'results_gradio/'), out_sub_name)
root_out_path_details = root_out_path + 'details/'
if not os.path.exists(root_out_path): os.makedirs(root_out_path)
if not os.path.exists(root_out_path_details): os.makedirs(root_out_path_details)
print('root_out_path: ' + root_out_path)
# other paths
root_data_path = os.path.join(os.path.dirname(__file__), '../', 'data')
# downsampling as used in graph neural network
root_smal_downsampling = os.path.join(root_data_path, 'graphcmr_data')
# remeshing as used for ground contact
remeshing_path = os.path.join(root_data_path, 'smal_data_remeshed', 'uniform_surface_sampling', 'my_smpl_39dogsnorm_Jr_4_dog_remesh4000_info.pkl')
loss_weight_path = os.path.join(os.path.dirname(__file__), '../', 'src', 'configs', 'ttopt_loss_weights', args_loss_weight_ttopt_path)
print(loss_weight_path)
# Select the hardware device to use for training.
if torch.cuda.is_available() and cfg.device=='cuda':
device = torch.device('cuda', torch.cuda.current_device())
torch.backends.cudnn.benchmark = False # True
else:
device = torch.device('cpu')
print('structure_pose_net: ' + cfg.params.STRUCTURE_POSE_NET)
print('refinement network type: ' + cfg.params.REF_NET_TYPE)
print('smal_model_type: ' + cfg.smal.SMAL_MODEL_TYPE)
# prepare complete model
norm_dict = get_norm_dict(data_info=None, device=device)
bite_model = BITEInferenceModel(cfg, path_model_file_complete, norm_dict)
smal_model_type = bite_model.smal_model_type
logscale_part_list = SMAL_MODEL_CONFIG[smal_model_type]['logscale_part_list'] # ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l']
smal = SMAL(smal_model_type=smal_model_type, template_name='neutral', logscale_part_list=logscale_part_list).to(device)
silh_renderer = SilhRenderer(image_size=256).to(device)
# load loss modules -> not necessary!
# loss_module = Loss(smal_model_type=cfg.smal.SMAL_MODEL_TYPE, data_info=StanExt.DATA_INFO, nf_version=cfg.params.NF_VERSION).to(device)
# loss_module_ref = LossRef(smal_model_type=cfg.smal.SMAL_MODEL_TYPE, data_info=StanExt.DATA_INFO, nf_version=cfg.params.NF_VERSION).to(device)
# remeshing utils
with open(remeshing_path, 'rb') as fp:
remeshing_dict = pkl.load(fp)
remeshing_relevant_faces = torch.tensor(remeshing_dict['smal_faces'][remeshing_dict['faceid_closest']], dtype=torch.long, device=device)
remeshing_relevant_barys = torch.tensor(remeshing_dict['barys_closest'], dtype=torch.float32, device=device)
# create path for output files
save_imgs_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples')
if not os.path.exists(save_imgs_path):
os.makedirs(save_imgs_path)
def run_bite_inference(input_image, bbox=None, apply_ttopt=True, dog_name="dog_model"):
with open(loss_weight_path, 'r') as j:
losses = json.loads(j.read())
shutil.copyfile(loss_weight_path, root_out_path_details + os.path.basename(loss_weight_path))
# prepare dataset and dataset loader
val_dataset, val_loader, len_val_dataset, test_name_list, stanext_data_info, stanext_acc_joints = get_single_crop_dataset_from_image(input_image, bbox=bbox)
# summarize information for normalization
norm_dict = get_norm_dict(stanext_data_info, device)
# get keypoint weights
keypoint_weights = torch.tensor(stanext_data_info.keypoint_weights, dtype=torch.float)[None, :].to(device)
# prepare progress bar
iterable = enumerate(val_loader) # the length of this iterator should be 1
progress = None
if False: # not quiet:
progress = tqdm(iterable, desc='Train', total=len(val_loader), ascii=True, leave=False)
iterable = progress
ind_img_tot = 0
for i, (input, target_dict) in iterable:
batch_size = input.shape[0]
# prepare variables, put them on the right device
for key in target_dict.keys():
if key == 'breed_index':
target_dict[key] = target_dict[key].long().to(device)
elif key in ['index', 'pts', 'tpts', 'target_weight', 'silh', 'silh_distmat_tofg', 'silh_distmat_tobg', 'sim_breed_index', 'img_border_mask']:
target_dict[key] = target_dict[key].float().to(device)
elif key == 'has_seg':
target_dict[key] = target_dict[key].to(device)
else:
pass
input = input.float().to(device)
# get starting values for the optimization
preds_dict = bite_model.get_all_results(input)
# res_normal_and_ref = bite_model.get_selected_results(preds_dict=preds_dict, result_networks=['normal', 'ref'])
res = bite_model.get_selected_results(preds_dict=preds_dict, result_networks=['ref'])['ref']
bs = res['pose_rotmat'].shape[0]
all_pose_6d = rotmat_to_rot6d(res['pose_rotmat'][:, None, 1:, :, :].clone().reshape((-1, 3, 3))).reshape((bs, -1, 6)) # [bs, 34, 6]
all_orient_6d = rotmat_to_rot6d(res['pose_rotmat'][:, None, :1, :, :].clone().reshape((-1, 3, 3))).reshape((bs, -1, 6)) # [bs, 1, 6]
ind_img = 0
name = (test_name_list[target_dict['index'][ind_img].long()]).replace('/', '__').split('.')[0]
ind_img_tot += 1
batch_size = 1
# initialize the variables over which we want to optimize
optimed_pose_6d = all_pose_6d[ind_img, None, :, :].to(device).clone().detach().requires_grad_(True)
optimed_orient_6d = all_orient_6d[ind_img, None, :, :].to(device).clone().detach().requires_grad_(True) # [1, 1, 6]
optimed_betas = res['betas'][ind_img, None, :].to(device).clone().detach().requires_grad_(True) # [1,30]
optimed_trans_xy = res['trans'][ind_img, None, :2].to(device).clone().detach().requires_grad_(True)
optimed_trans_z =res['trans'][ind_img, None, 2:3].to(device).clone().detach().requires_grad_(True)
optimed_camera_flength = res['flength'][ind_img, None, :].to(device).clone().detach().requires_grad_(True) # [1,1]
n_vert_comp = 2*smal.n_center + 3*smal.n_left
optimed_vert_off_compact = torch.tensor(np.zeros((batch_size, n_vert_comp)), dtype=torch.float,
device=device,
requires_grad=True)
assert len(logscale_part_list) == 7
new_betas_limb_lengths = res['betas_limbs'][ind_img, None, :]
optimed_betas_limbs = new_betas_limb_lengths.to(device).clone().detach().requires_grad_(True) # [1,7]
# define the optimizers
optimizer = torch.optim.SGD(
# [optimed_pose, optimed_trans_xy, optimed_betas, optimed_betas_limbs, optimed_orient, optimed_vert_off_compact],
[optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_pose_6d, optimed_orient_6d, optimed_betas, optimed_betas_limbs],
lr=5*1e-4, # 1e-3,
momentum=0.9)
optimizer_vshift = torch.optim.SGD(
[optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_pose_6d, optimed_orient_6d, optimed_betas, optimed_betas_limbs, optimed_vert_off_compact],
lr=1e-4, # 1e-4,
momentum=0.9)
nopose_optimizer = torch.optim.SGD(
# [optimed_pose, optimed_trans_xy, optimed_betas, optimed_betas_limbs, optimed_orient, optimed_vert_off_compact],
[optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_orient_6d, optimed_betas, optimed_betas_limbs],
lr=5*1e-4, # 1e-3,
momentum=0.9)
nopose_optimizer_vshift = torch.optim.SGD(
[optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_orient_6d, optimed_betas, optimed_betas_limbs, optimed_vert_off_compact],
lr=1e-4, # 1e-4,
momentum=0.9)
# define schedulers
patience = 5
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode='min',
factor=0.5,
verbose=0,
min_lr=1e-5,
patience=patience)
scheduler_vshift = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_vshift,
mode='min',
factor=0.5,
verbose=0,
min_lr=1e-5,
patience=patience)
# set all loss values to 0
losses = reset_loss_values(losses)
# prepare all the target labels: keypoints, silhouette, ground contact, ...
with torch.no_grad():
thr_kp = 0.2
kp_weights = res['hg_keyp_scores']
kp_weights[res['hg_keyp_scores']<thr_kp] = 0
weights_resh = kp_weights[ind_img, None, :, :].reshape((-1)) # target_dict['tpts'][:, :, 2].reshape((-1))
keyp_w_resh = keypoint_weights.repeat((batch_size, 1)).reshape((-1))
# prepare predicted ground contact labels
sm = nn.Softmax(dim=1)
target_gc_class = sm(res['vertexwise_ground_contact'][ind_img, :, :])[None, :, 1] # values between 0 and 1
target_gc_class_remeshed = torch.einsum('ij,aij->ai', remeshing_relevant_barys, target_gc_class[:, remeshing_relevant_faces].to(device=device, dtype=torch.float32))
target_gc_class_remeshed_prep = torch.round(target_gc_class_remeshed).to(torch.long)
# vert_colors = np.repeat(255*target_gc_class.detach().cpu().numpy()[0, :, None], 3, 1)
# vert_colors[:, 2] = 255
vert_colors = np.ones_like(np.repeat(target_gc_class.detach().cpu().numpy()[0, :, None], 3, 1)) * 255
faces_prep = smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
# prepare target silhouette and keypoints, from stacked hourglass predictions
target_hg_silh = res['hg_silh_prep'][ind_img, :, :].detach()
target_kp_resh = res['hg_keyp_256'][ind_img, None, :, :].reshape((-1, 2)).detach()
# find out if ground contact constraints should be used for the image at hand
if res['isflat_prep'][ind_img] >= 0.5: # threshold should probably be set higher
isflat = [True]
else:
isflat = [False]
if target_gc_class_remeshed_prep.sum() > 3:
istouching = [True]
else:
istouching = [False]
ignore_pose_optimization = False
if not apply_ttopt:
# get 3d smal model
optimed_pose_with_glob = get_optimed_pose_with_glob(optimed_orient_6d, optimed_pose_6d)
optimed_trans = torch.cat((optimed_trans_xy, optimed_trans_z), dim=1)
smal_verts, keyp_3d, _ = smal(beta=optimed_betas, betas_limbs=optimed_betas_limbs, pose=optimed_pose_with_glob, vert_off_compact=optimed_vert_off_compact, trans=optimed_trans, keyp_conf='olive', get_skin=True)
# save mesh
my_mesh_tri = trimesh.Trimesh(vertices=smal_verts[0, ...].detach().cpu().numpy(), faces=faces_prep[0, ...].detach().cpu().numpy(), process=False, maintain_order=True)
my_mesh_tri.visual.vertex_colors = vert_colors
# my_mesh_tri.export(root_out_path + name + '_res_e000' + '.obj')
else:
##########################################################################################################
# start optimizing for this image
n_iter = 301 # how many iterations are desired? (+1)
loop = range(n_iter)
per_loop_lst = []
list_error_procrustes = []
for i in loop:
# for the first 150 iterations steps we don't allow vertex shifts
if i == 0:
current_i = 0
if ignore_pose_optimization:
current_optimizer = nopose_optimizer
else:
current_optimizer = optimizer
current_scheduler = scheduler
current_weight_name = 'weight'
# after 150 iteration steps we start with vertex shifts
elif i == 150:
current_i = 0
if ignore_pose_optimization:
current_optimizer = nopose_optimizer_vshift
else:
current_optimizer = optimizer_vshift
current_scheduler = scheduler_vshift
current_weight_name = 'weight_vshift'
# set up arap loss
if losses["arap"]['weight_vshift'] > 0.0:
with torch.no_grad():
torch_mesh_comparison = Meshes(smal_verts.detach(), faces_prep.detach())
arap_loss = Arap_Loss(meshes=torch_mesh_comparison, device=device)
# is there a laplacian loss similar as in coarse-to-fine?
if losses["lapctf"]['weight_vshift'] > 0.0:
torch_verts_comparison = smal_verts.detach().clone()
smal_model_type_downsampling = '39dogs_norm'
smal_downsampling_npz_name = 'mesh_downsampling_' + os.path.basename(SMAL_MODEL_CONFIG[smal_model_type_downsampling]['smal_model_path']).replace('.pkl', '_template.npz')
smal_downsampling_npz_path = os.path.join(root_smal_downsampling, smal_downsampling_npz_name)
data = np.load(smal_downsampling_npz_path, encoding='latin1', allow_pickle=True)
adjmat = data['A'][0]
laplacian_ctf = LaplacianCTF(adjmat, device=device)
else:
pass
current_optimizer.zero_grad()
# get 3d smal model
optimed_pose_with_glob = get_optimed_pose_with_glob(optimed_orient_6d, optimed_pose_6d)
optimed_trans = torch.cat((optimed_trans_xy, optimed_trans_z), dim=1)
smal_verts, keyp_3d, _ = smal(beta=optimed_betas, betas_limbs=optimed_betas_limbs, pose=optimed_pose_with_glob, vert_off_compact=optimed_vert_off_compact, trans=optimed_trans, keyp_conf='olive', get_skin=True)
# render silhouette and keypoints
pred_silh_images, pred_keyp_raw = silh_renderer(vertices=smal_verts, points=keyp_3d, faces=faces_prep, focal_lengths=optimed_camera_flength)
pred_keyp = pred_keyp_raw[:, :24, :]
# save silhouette reprojection visualization
"""
if i==0:
img_silh = Image.fromarray(np.uint8(255*pred_silh_images[0, 0, :, :].detach().cpu().numpy())).convert('RGB')
img_silh.save(root_out_path_details + name + '_silh_ainit.png')
my_mesh_tri = trimesh.Trimesh(vertices=smal_verts[0, ...].detach().cpu().numpy(), faces=faces_prep[0, ...].detach().cpu().numpy(), process=False, maintain_order=True)
my_mesh_tri.export(root_out_path_details + name + '_res_ainit.obj')
"""
# silhouette loss
diff_silh = torch.abs(pred_silh_images[0, 0, :, :] - target_hg_silh)
losses['silhouette']['value'] = diff_silh.mean()
# keypoint_loss
output_kp_resh = (pred_keyp[0, :, :]).reshape((-1, 2))
losses['keyp']['value'] = ((((output_kp_resh - target_kp_resh)[weights_resh>0]**2).sum(axis=1).sqrt() * \
weights_resh[weights_resh>0])*keyp_w_resh[weights_resh>0]).sum() / \
max((weights_resh[weights_resh>0]*keyp_w_resh[weights_resh>0]).sum(), 1e-5)
# losses['keyp']['value'] = ((((output_kp_resh - target_kp_resh)[weights_resh>0]**2).sum(axis=1).sqrt()*weights_resh[weights_resh>0])*keyp_w_resh[weights_resh>0]).sum() / max((weights_resh[weights_resh>0]*keyp_w_resh[weights_resh>0]).sum(), 1e-5)
# pose priors on refined pose
losses['pose_legs_side']['value'] = leg_sideway_error(optimed_pose_with_glob)
losses['pose_legs_tors']['value'] = leg_torsion_error(optimed_pose_with_glob)
losses['pose_tail_side']['value'] = tail_sideway_error(optimed_pose_with_glob)
losses['pose_tail_tors']['value'] = tail_torsion_error(optimed_pose_with_glob)
losses['pose_spine_side']['value'] = spine_sideway_error(optimed_pose_with_glob)
losses['pose_spine_tors']['value'] = spine_torsion_error(optimed_pose_with_glob)
# ground contact loss
sel_verts = torch.index_select(smal_verts, dim=1, index=remeshing_relevant_faces.reshape((-1))).reshape((batch_size, remeshing_relevant_faces.shape[0], 3, 3))
verts_remeshed = torch.einsum('ij,aijk->aik', remeshing_relevant_barys, sel_verts)
# gc_errors_plane, gc_errors_under_plane = calculate_plane_errors_batch(verts_remeshed, target_gc_class_remeshed_prep, target_dict['has_gc'], target_dict['has_gc_is_touching'])
gc_errors_plane, gc_errors_under_plane = calculate_plane_errors_batch(verts_remeshed, target_gc_class_remeshed_prep, isflat, istouching)
losses['gc_plane']['value'] = torch.mean(gc_errors_plane)
losses['gc_belowplane']['value'] = torch.mean(gc_errors_under_plane)
# edge length of the predicted mesh
if (losses["edge"][current_weight_name] + losses["normal"][ current_weight_name] + losses["laplacian"][ current_weight_name]) > 0:
torch_mesh = Meshes(smal_verts, faces_prep.detach())
losses["edge"]['value'] = mesh_edge_loss(torch_mesh)
# mesh normal consistency
losses["normal"]['value'] = mesh_normal_consistency(torch_mesh)
# mesh laplacian smoothing
losses["laplacian"]['value'] = mesh_laplacian_smoothing(torch_mesh, method="uniform")
# arap loss
if losses["arap"][current_weight_name] > 0.0:
torch_mesh = Meshes(smal_verts, faces_prep.detach())
losses["arap"]['value'] = arap_loss(torch_mesh)
# laplacian loss for comparison (from coarse-to-fine paper)
if losses["lapctf"][current_weight_name] > 0.0:
verts_refine = smal_verts
loss_almost_arap, loss_smooth = laplacian_ctf(verts_refine, torch_verts_comparison)
losses["lapctf"]['value'] = loss_almost_arap
# Weighted sum of the losses
total_loss = 0.0
for k in ['keyp', 'silhouette', 'pose_legs_side', 'pose_legs_tors', 'pose_tail_side', 'pose_tail_tors', 'pose_spine_tors', 'pose_spine_side', 'gc_plane', 'gc_belowplane', 'edge', 'normal', 'laplacian', 'arap', 'lapctf']:
if losses[k][current_weight_name] > 0.0:
total_loss += losses[k]['value'] * losses[k][current_weight_name]
# calculate gradient and make optimization step
total_loss.backward(retain_graph=True) #
current_optimizer.step()
current_scheduler.step(total_loss)
# loop.set_description(f"Body Fitting = {total_loss.item():.3f}")
# save the result three times (0, 150, 300)
if i == 300: # if i % 150 == 0:
# save silhouette image
img_silh = Image.fromarray(np.uint8(255*pred_silh_images[0, 0, :, :].detach().cpu().numpy())).convert('RGB')
img_silh.save(root_out_path_details + name + '_silh_e' + format(i, '03d') + '.png')
# save image overlay
visualizations = silh_renderer.get_visualization_nograd(smal_verts, faces_prep, optimed_camera_flength, color=0)
pred_tex = visualizations[0, :, :, :].permute((1, 2, 0)).cpu().detach().numpy() / 256
# out_path = root_out_path_details + name + '_tex_pred_e' + format(i, '03d') + '.png'
# plt.imsave(out_path, pred_tex)
pred_tex_max = np.max(pred_tex, axis=2)
out_path = root_out_path + name + '_comp_pred_e' + format(i, '03d') + '.png'
# save mesh
my_mesh_tri = trimesh.Trimesh(vertices=smal_verts[0, ...].detach().cpu().numpy(), faces=faces_prep[0, ...].detach().cpu().numpy(), process=False, maintain_order=True)
my_mesh_tri.visual.vertex_colors = vert_colors
# my_mesh_tri.export(root_out_path + name + '_res_e' + format(i, '03d') + '.obj')
# save focal length (together with the mesh this is enough to create an overlay in blender)
# out_file_flength = root_out_path_details + name + '_flength_e' + format(i, '03d') # + '.npz'
# np.save(out_file_flength, optimed_camera_flength.detach().cpu().numpy())
current_i += 1
# prepare output mesh
mesh = my_mesh_tri # all_results[0]['mesh_posed']
mesh.apply_transform([[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, 1, 1],
[0, 0, 0, 1]])
result_path = os.path.join(save_imgs_path, dog_name)
mesh.export(file_obj=result_path + '.glb')
result_gltf = result_path + '.glb'
return result_gltf
# -------------------------------------------------------------------------------------------------------------------- #
total_count = 0
def run_complete_inference(img_path_or_img, crop_choice, use_ttopt):
now = datetime.now()
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
global total_count
total_count += 1
print(dt_string + ' total count: ' + str(total_count))
# depending on crop_choice: run faster r-cnn or take the input image directly
if crop_choice == "input image is cropped":
if isinstance(img_path_or_img, str):
img = cv2.imread(img_path_or_img)
output_interm_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
output_interm_image = img_path_or_img
output_interm_bbox = None
else:
output_interm_image, output_interm_bbox = run_bbox_inference(img_path_or_img.copy())
if use_ttopt == "enable test-time optimization":
apply_ttopt = True
else:
apply_ttopt = False
# run barc inference
if img_path_or_img.dtype == str:
dog_name = os.path.basename(img_path_or_img).split(".")[0]
else:
dog_name = "dog"
result_gltf = run_bite_inference(img_path_or_img, output_interm_bbox, apply_ttopt, dog_name=dog_name)
# add white border to image for nicer alignment
output_interm_image_vis = np.concatenate((255*np.ones_like(output_interm_image), output_interm_image, 255*np.ones_like(output_interm_image)), axis=1)
return [result_gltf, result_gltf, output_interm_image_vis]
########################################################################################################################
# see: https://huggingface.co/spaces/radames/PIFu-Clothed-Human-Digitization/blob/main/PIFu/spaces.py
description = '''
# BITE
#### Project Page
* https://bite.is.tue.mpg.de/
#### Description
This is a demo for BITE (*B*eyond Priors for *I*mproved *T*hree-{D} Dog Pose *E*stimation).
To run inference on one of the examples below, click on the desired image and push the submit button. Alternatively, you may upload one of your own images.
You can either submit a cropped image or choose the option to run a pretrained Faster R-CNN in order to obtain a bounding box.
While we recommend enabeling test-time optimization (computation can take up to a minute), you have the possibility to skip it, which will lead to faster calculation (a few seconds) at the cost of less accurate results.
<details>
<summary>More</summary>
#### Citation
```
@inproceedings{bite2023rueegg,
title = {{BITE}: Beyond Priors for Improved Three-{D} Dog Pose Estimation},
author = {R\"uegg, Nadine and Tripathi, Shashank and Schindler, Konrad and Black, Michael J. and Zuffi, Silvia},
booktitle = {IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
pages = {8867-8876},
year = {2023},
}
```
#### Image Sources
* Stanford extra image dataset
* Images from google search engine
* https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRnx2sHnnLU3zy1XnJB7BvGUR9spmAh5bxTUg&usqp=CAU
* https://www.westend61.de/en/imageView/CAVF56467/portrait-of-dog-lying-on-floor-at-home
#### Disclosure
The results shown in this demo are slightly improved compared to the ones depicted within our paper, as we apply a regularizer on the tail.
</details>
'''
example_images = sorted(glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.jpg')) + glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.jpeg')) + glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.png')))
random.shuffle(example_images)
# example_images.reverse()
# examples = [[img, "input image is cropped"] for img in example_images]
examples = []
for img in example_images:
if os.path.basename(img)[:2] == 'z_':
examples.append([img, "use Faster R-CNN to get a bounding box", "enable test-time optimization"])
else:
examples.append([img, "input image is cropped", "enable test-time optimization"])
demo = gr.Interface(
fn=run_complete_inference,
description=description,
inputs=[gr.Image(label="Input Image"),
gr.Radio(["input image is cropped", "use Faster R-CNN to get a bounding box"], value="use Faster R-CNN to get a bounding box", label="Crop Choice"),
gr.Radio(["enable test-time optimization", "skip test-time optimization"], value="enable test-time optimization", label="Test Time Optimization"),
],
outputs=[
gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
gr.File(label="Download 3D Model"),
gr.Image(label="Bounding Box (Faster R-CNN prediction)"),
],
examples=examples,
thumbnail="bite_thumbnail.png",
allow_flagging="never",
cache_examples=True,
examples_per_page=14,
)
demo.launch() # share=True) |