File size: 2,235 Bytes
753fd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
code from https://raw.githubusercontent.com/nkolot/GraphCMR/master/models/graph_cnn.py
This file contains the Definition of GraphCNN
GraphCNN includes ResNet50 as a submodule
"""
from __future__ import division

import torch
import torch.nn as nn

from .graph_layers import GraphResBlock, GraphLinear
from .resnet import resnet50

class GraphCNN(nn.Module):
    
    def __init__(self, A, ref_vertices, num_layers=5, num_channels=512):
        super(GraphCNN, self).__init__()
        self.A = A
        self.ref_vertices = ref_vertices
        self.resnet = resnet50(pretrained=True)
        layers = [GraphLinear(3 + 2048, 2 * num_channels)]
        layers.append(GraphResBlock(2 * num_channels, num_channels, A))
        for i in range(num_layers):
            layers.append(GraphResBlock(num_channels, num_channels, A))
        self.shape = nn.Sequential(GraphResBlock(num_channels, 64, A),
                                   GraphResBlock(64, 32, A),
                                   nn.GroupNorm(32 // 8, 32),
                                   nn.ReLU(inplace=True),
                                   GraphLinear(32, 3))
        self.gc = nn.Sequential(*layers)
        self.camera_fc = nn.Sequential(nn.GroupNorm(num_channels // 8, num_channels),
                                      nn.ReLU(inplace=True),
                                      GraphLinear(num_channels, 1),
                                      nn.ReLU(inplace=True),
                                      nn.Linear(A.shape[0], 3))

    def forward(self, image):
        """Forward pass
        Inputs:
            image: size = (B, 3, 224, 224)
        Returns:
            Regressed (subsampled) non-parametric shape: size = (B, 1723, 3)
            Weak-perspective camera: size = (B, 3)
        """
        batch_size = image.shape[0]
        ref_vertices = self.ref_vertices[None, :, :].expand(batch_size, -1, -1)
        image_resnet = self.resnet(image)
        image_enc = image_resnet.view(batch_size, 2048, 1).expand(-1, -1, ref_vertices.shape[-1])
        x = torch.cat([ref_vertices, image_enc], dim=1)
        x = self.gc(x)
        shape = self.shape(x)
        camera = self.camera_fc(x).view(batch_size, 3)
        return shape, camera