Spaces:
Runtime error
Runtime error
File size: 4,602 Bytes
753fd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
"""
code from https://github.com/nkolot/GraphCMR/blob/master/models/graph_layers.py
This file contains definitions of layers used to build the GraphCNN
"""
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class GraphConvolution(nn.Module):
"""Simple GCN layer, similar to https://arxiv.org/abs/1609.02907."""
def __init__(self, in_features, out_features, adjmat, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.adjmat = adjmat
self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
# stdv = 1. / math.sqrt(self.weight.size(1))
stdv = 6. / math.sqrt(self.weight.size(0) + self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, x):
if x.ndimension() == 2:
support = torch.matmul(x, self.weight)
output = torch.matmul(self.adjmat, support)
if self.bias is not None:
output = output + self.bias
return output
else:
output = []
for i in range(x.shape[0]):
support = torch.matmul(x[i], self.weight)
# output.append(torch.matmul(self.adjmat, support))
output.append(spmm(self.adjmat, support))
output = torch.stack(output, dim=0)
if self.bias is not None:
output = output + self.bias
return output
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
class GraphLinear(nn.Module):
"""
Generalization of 1x1 convolutions on Graphs
"""
def __init__(self, in_channels, out_channels):
super(GraphLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.W = nn.Parameter(torch.FloatTensor(out_channels, in_channels))
self.b = nn.Parameter(torch.FloatTensor(out_channels))
self.reset_parameters()
def reset_parameters(self):
w_stdv = 1 / (self.in_channels * self.out_channels)
self.W.data.uniform_(-w_stdv, w_stdv)
self.b.data.uniform_(-w_stdv, w_stdv)
def forward(self, x):
return torch.matmul(self.W[None, :], x) + self.b[None, :, None]
class GraphResBlock(nn.Module):
"""
Graph Residual Block similar to the Bottleneck Residual Block in ResNet
"""
def __init__(self, in_channels, out_channels, A):
super(GraphResBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lin1 = GraphLinear(in_channels, out_channels // 2)
self.conv = GraphConvolution(out_channels // 2, out_channels // 2, A)
self.lin2 = GraphLinear(out_channels // 2, out_channels)
self.skip_conv = GraphLinear(in_channels, out_channels)
self.pre_norm = nn.GroupNorm(in_channels // 8, in_channels)
self.norm1 = nn.GroupNorm((out_channels // 2) // 8, (out_channels // 2))
self.norm2 = nn.GroupNorm((out_channels // 2) // 8, (out_channels // 2))
def forward(self, x):
y = F.relu(self.pre_norm(x))
y = self.lin1(y)
y = F.relu(self.norm1(y))
y = self.conv(y.transpose(1,2)).transpose(1,2)
y = F.relu(self.norm2(y))
y = self.lin2(y)
if self.in_channels != self.out_channels:
x = self.skip_conv(x)
return x+y
class SparseMM(torch.autograd.Function):
"""Redefine sparse @ dense matrix multiplication to enable backpropagation.
The builtin matrix multiplication operation does not support backpropagation in some cases.
"""
@staticmethod
def forward(ctx, sparse, dense):
ctx.req_grad = dense.requires_grad
ctx.save_for_backward(sparse)
return torch.matmul(sparse, dense)
@staticmethod
def backward(ctx, grad_output):
grad_input = None
sparse, = ctx.saved_tensors
if ctx.req_grad:
grad_input = torch.matmul(sparse.t(), grad_output)
return None, grad_input
def spmm(sparse, dense):
return SparseMM.apply(sparse, dense) |