File size: 4,890 Bytes
753fd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# code from https://github.com/nkolot/GraphCMR/blob/master/utils/mesh.py

from __future__ import division
import torch
import numpy as np
import scipy.sparse

# from models import SMPL
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..'))
from graph_networks.graphcmr.graph_layers import spmm

def scipy_to_pytorch(A, U, D):
    """Convert scipy sparse matrices to pytorch sparse matrix."""
    ptU = []
    ptD = []
    
    for i in range(len(U)):
        u = scipy.sparse.coo_matrix(U[i])
        i = torch.LongTensor(np.array([u.row, u.col]))
        v = torch.FloatTensor(u.data)
        ptU.append(torch.sparse.FloatTensor(i, v, u.shape))
    
    for i in range(len(D)):
        d = scipy.sparse.coo_matrix(D[i])
        i = torch.LongTensor(np.array([d.row, d.col]))
        v = torch.FloatTensor(d.data)
        ptD.append(torch.sparse.FloatTensor(i, v, d.shape)) 

    return ptU, ptD


def adjmat_sparse(adjmat, nsize=1):
    """Create row-normalized sparse graph adjacency matrix."""
    adjmat = scipy.sparse.csr_matrix(adjmat)
    if nsize > 1:
        orig_adjmat = adjmat.copy()
        for _ in range(1, nsize):
            adjmat = adjmat * orig_adjmat
    adjmat.data = np.ones_like(adjmat.data)
    for i in range(adjmat.shape[0]):
        adjmat[i,i] = 1
    num_neighbors = np.array(1 / adjmat.sum(axis=-1))
    adjmat = adjmat.multiply(num_neighbors)
    adjmat = scipy.sparse.coo_matrix(adjmat)
    row = adjmat.row
    col = adjmat.col
    data = adjmat.data
    i = torch.LongTensor(np.array([row, col]))
    v = torch.from_numpy(data).float()
    adjmat = torch.sparse.FloatTensor(i, v, adjmat.shape)
    return adjmat

def get_graph_params(filename, nsize=1):
    """Load and process graph adjacency matrix and upsampling/downsampling matrices."""
    data = np.load(filename, encoding='latin1', allow_pickle=True) # np.load(filename, encoding='latin1')
    A = data['A']
    U = data['U']
    D = data['D']
    U, D = scipy_to_pytorch(A, U, D)
    A = [adjmat_sparse(a, nsize=nsize) for a in A]
    return A, U, D

class Mesh(object):
    """Mesh object that is used for handling certain graph operations."""
    def __init__(self, filename='data/mesh_downsampling.npz',
                 num_downsampling=1, nsize=1, body_model=None, device=torch.device('cuda')):
        self._A, self._U, self._D = get_graph_params(filename=filename, nsize=nsize)
        self._A = [a.to(device) for a in self._A]
        self._U = [u.to(device) for u in self._U]
        self._D = [d.to(device) for d in self._D]
        self.num_downsampling = num_downsampling

        # load template vertices from SMPL and normalize them
        if body_model is None:
            smpl = SMPL()
        else:
            smpl = body_model
        ref_vertices = smpl.v_template
        center = 0.5*(ref_vertices.max(dim=0)[0] + ref_vertices.min(dim=0)[0])[None]
        ref_vertices -= center
        ref_vertices /= ref_vertices.abs().max().item()

        self._ref_vertices = ref_vertices.to(device)
        self.faces = smpl.faces.int().to(device)

    @property
    def adjmat(self):
        """Return the graph adjacency matrix at the specified subsampling level."""
        return self._A[self.num_downsampling].float()

    @property
    def ref_vertices(self):
        """Return the template vertices at the specified subsampling level."""
        ref_vertices = self._ref_vertices
        for i in range(self.num_downsampling):
            ref_vertices = torch.spmm(self._D[i], ref_vertices)
        return ref_vertices

    def get_ref_vertices(self, n_downsample):
        """Return the template vertices at any desired subsampling level."""
        ref_vertices = self._ref_vertices
        for i in range(n_downsample):
            ref_vertices = torch.spmm(self._D[i], ref_vertices)
        return ref_vertices

    def downsample(self, x, n1=0, n2=None):
        """Downsample mesh."""
        if n2 is None:
            n2 = self.num_downsampling
        if x.ndimension() < 3:
            for i in range(n1, n2):
                x = spmm(self._D[i], x)
        elif x.ndimension() == 3:
            out = []
            for i in range(x.shape[0]):
                y = x[i]
                for j in range(n1, n2):
                    y = spmm(self._D[j], y)
                out.append(y)
            x = torch.stack(out, dim=0)
        return x

    def upsample(self, x, n1=1, n2=0):
        """Upsample mesh."""
        if x.ndimension() < 3:
            for i in reversed(range(n2, n1)):
                x = spmm(self._U[i], x)
        elif x.ndimension() == 3:
            out = []
            for i in range(x.shape[0]):
                y = x[i]
                for j in reversed(range(n2, n1)):
                    y = spmm(self._U[j], y)
                out.append(y)
            x = torch.stack(out, dim=0)
        return x