Spaces:
Runtime error
Runtime error
File size: 17,701 Bytes
753fd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import gzip
import json
import os
import glob
import random
import math
import numpy as np
import torch
import torch.utils.data as data
from importlib_resources import open_binary
from scipy.io import loadmat
from tabulate import tabulate
import itertools
import json
from scipy import ndimage
import xml.etree.ElementTree as ET
from csv import DictReader
from pycocotools.mask import decode as decode_RLE
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../../../'))
# import stacked_hourglass.res
# from stacked_hourglass.datasets.common import DataInfo
from src.configs.anipose_data_info import COMPLETE_DATA_INFO
from src.stacked_hourglass.utils.imutils import load_image, draw_labelmap, draw_multiple_labelmaps
from src.stacked_hourglass.utils.misc import to_torch
from src.stacked_hourglass.utils.transforms import shufflelr, crop, color_normalize, fliplr, transform
import src.stacked_hourglass.datasets.utils_stanext as utils_stanext
from src.stacked_hourglass.utils.visualization import save_input_image_with_keypoints
# from configs.dog_breeds.dog_breed_class import COMPLETE_ABBREV_DICT, COMPLETE_SUMMARY_BREEDS, SIM_MATRIX_RAW, SIM_ABBREV_INDICES
class AniPose(data.Dataset):
DATA_INFO = COMPLETE_DATA_INFO
# Suggested joints to use for average PCK calculations.
ACC_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] # don't know ...
def __init__(self, image_path=None, is_train=True, inp_res=256, out_res=64, sigma=1,
scale_factor=0.25, rot_factor=30, label_type='Gaussian',
do_augment='default', shorten_dataset_to=None, dataset_mode='keyp_only'):
# self.img_folder_mpii = image_path # root image folders
self.is_train = is_train # training set or test set
if do_augment == 'yes':
self.do_augment = True
elif do_augment == 'no':
self.do_augment = False
elif do_augment=='default':
if self.is_train:
self.do_augment = True
else:
self.do_augment = False
else:
raise ValueError
self.inp_res = inp_res
self.out_res = out_res
self.sigma = sigma
self.scale_factor = scale_factor
self.rot_factor = rot_factor
self.label_type = label_type
self.dataset_mode = dataset_mode
if self.dataset_mode=='complete' or self.dataset_mode=='keyp_and_seg':
self.calc_seg = True
else:
self.calc_seg = False
self.kp_dict = self.keyp_name_to_ind()
# import pdb; pdb.set_trace()
self.top_folder = '/ps/scratch/nrueegg/new_projects/Animals/data/animal_pose_dataset/'
self.folder_imgs_0 = '/ps/project/datasets/VOCdevkit/VOC2012/JPEGImages/'
self.folder_imgs_1 = os.path.join(self.top_folder, 'animalpose_image_part2', 'dog')
self.folder_annot_0 = os.path.join(self.top_folder, 'PASCAL2011_animal_annotation', 'dog')
self.folder_annot_1 = os.path.join(self.top_folder, 'animalpose_anno2', 'dog')
all_annot_files_0 = glob.glob(self.folder_annot_0 + '/*.xml') # 1571
'''all_annot_files_0_raw.sort()
all_annot_files_0 = [] # 1331
for ind_f, f in enumerate(all_annot_files_0_raw):
name = (f.split('/')[-1]).split('.xml')[0]
name_main = name[:-2]
if ind_f > 0:
if (not name_main == name_main_last) or (ind_f == len(all_annot_files_0_raw)-1):
all_annot_files_0.append(f_last)
f_last = f
name_main_last = name_main'''
all_annot_files_1 = glob.glob(self.folder_annot_1 + '/*.xml') # 200
all_annot_files = all_annot_files_0 + all_annot_files_1
# old for hg_anipose_v0
# self.train_name_list = all_annot_files
# self.test_name_list = all_annot_files[0:50] + all_annot_files[200:250]
# new for hg_anipose_v1
self.train_name_list = all_annot_files[:-50]
self.test_name_list = all_annot_files[-50:]
'''all_annot_files.sort()
self.train_name_list = all_annot_files[:24]
self.test_name_list = all_annot_files[24:36]'''
print('anipose dataset size: ')
print(len(self.train_name_list))
print(len(self.test_name_list))
# -----------------------------------------
def read_content(sewlf, xml_file, annot_type='animal_pose'):
# annot_type is either 'animal_pose' or 'animal_pose_voc' or 'voc'
# examples:
# animal_pose: '/ps/scratch/nrueegg/new_projects/Animals/data/animal_pose_dataset/animalpose_anno2/cat/ca137.xml'
# animal_pose_voc: '/ps/scratch/nrueegg/new_projects/Animals/data/animal_pose_dataset/PASCAL2011_animal_annotation/cat/2008_005380_1.xml'
# voc: '/ps/project/datasets/VOCdevkit/VOC2012/Annotations/2011_000192.xml'
if annot_type == 'animal_pose' or annot_type == 'animal_pose_voc':
my_dict = {}
tree = ET.parse(xml_file)
root = tree.getroot()
for child in root: # list
if child.tag == 'image':
my_dict['image'] = child.text
elif child.tag == 'category':
my_dict['category'] = child.text
elif child.tag == 'visible_bounds':
my_dict['visible_bounds'] = child.attrib
elif child.tag == 'keypoints':
n_kp = len(child)
xyzvis = np.zeros((n_kp, 4))
kp_names = []
for ind_kp, kp in enumerate(child): # list
xyzvis[ind_kp, 0] = kp.attrib['x']
xyzvis[ind_kp, 1] = kp.attrib['y']
xyzvis[ind_kp, 2] = kp.attrib['z']
xyzvis[ind_kp, 3] = kp.attrib['visible']
kp_names.append(kp.attrib['name'])
my_dict['keypoints_xyzvis'] = xyzvis
my_dict['keypoints_names'] = kp_names
elif child.tag == 'voc_id': # animal_pose_voc only
my_dict['voc_id'] = child.text
elif child.tag == 'polylinesegments': # animal_pose_voc only
my_dict['polylinesegments'] = child[0].attrib
else:
print('tag does not exist: ' + child.tag)
# print(my_dict)
elif annot_type == 'voc':
my_dict = {}
print('not yet read')
else:
print('this annot_type does not exist')
import pdb; pdb.set_trace()
return my_dict
def keyp_name_to_ind(self):
'''AniPose_JOINT_NAMES = [
'L_Eye', 'R_Eye', 'Nose', 'L_EarBase', 'Throat', 'R_F_Elbow', 'R_F_Paw',
'R_B_Paw', 'R_EarBase', 'L_F_Elbow', 'L_F_Paw', 'Withers', 'TailBase',
'L_B_Paw', 'L_B_Elbow', 'R_B_Elbow', 'L_F_Knee', 'R_F_Knee', 'L_B_Knee',
'R_B_Knee']'''
kps = self.DATA_INFO.joint_names
kps_dict = {}
for ind_kp, kp in enumerate(kps):
kps_dict[kp] = ind_kp
kps_dict[kp.lower()] = ind_kp
if kp.lower() == 'l_earbase':
kps_dict['l_ear'] = ind_kp
if kp.lower() == 'r_earbase':
kps_dict['r_ear'] = ind_kp
if kp.lower() == 'tailbase':
kps_dict['tail'] = ind_kp
return kps_dict
def __getitem__(self, index):
# import pdb; pdb.set_trace()
if self.is_train:
xml_path = self.train_name_list[index]
else:
xml_path = self.test_name_list[index]
name = (xml_path.split('/')[-1]).split('.xml')[0]
annot_dict = self.read_content(xml_path, annot_type='animal_pose_voc')
if xml_path.split('/')[-3] == 'PASCAL2011_animal_annotation':
img_path = os.path.join(self.folder_imgs_0, annot_dict['image'] + '.jpg')
keyword_ymin = 'ymin'
else:
# import pdb; pdb.set_trace()
img_path = os.path.join(self.folder_imgs_1, annot_dict['image'])
keyword_ymin = 'xmax'
'''print(img_path)
print(annot_dict['keypoints_xyzvis'].shape)
print(annot_dict['keypoints_names'])'''
sf = self.scale_factor
rf = self.rot_factor
vis_np = np.zeros((self.DATA_INFO.n_keyp))
pts_np = np.ones((self.DATA_INFO.n_keyp, 2)) * (-1000)
for ind_key, key in enumerate(annot_dict['keypoints_names']):
key_lower = key.lower()
ind_new = self.kp_dict[key_lower]
vis_np[ind_new] = annot_dict['keypoints_xyzvis'][ind_key, 3]
# remark: the first training run (animalpose_hg8_v0) was without subtracting 1 which would be important!
# pts_np[ind_new] = annot_dict['keypoints_xyzvis'][ind_key, 0:2]
# what we were doing until 08.09.2022:
pts_np[ind_new] = annot_dict['keypoints_xyzvis'][ind_key, 0:2] - 1
# new 08.09.2022
# pts_np[ind_new] = annot_dict['keypoints_xyzvis'][ind_key, 0:2]
# pts_np[ind_new] = annot_dict['keypoints_xyzvis'][ind_key, 0:2] # - 1
'''vis_np = annot_dict['keypoints_xyzvis'][:20, 3]
pts_np = annot_dict['keypoints_xyzvis'][:20, :2]
pts_np[vis_np==0] = -1000'''
pts_np = np.concatenate((pts_np, vis_np[:, None]), axis=1)
pts = torch.Tensor(pts_np)
# what we were doing until 08.09.2022:
# bbox_xywh = [float(annot_dict['visible_bounds']['xmin']), float(annot_dict['visible_bounds'][keyword_ymin]), \
# float(annot_dict['visible_bounds']['width']), float(annot_dict['visible_bounds']['height'])]
bbox_xywh = [float(annot_dict['visible_bounds']['xmin'])-1, float(annot_dict['visible_bounds'][keyword_ymin])-1, \
float(annot_dict['visible_bounds']['width']), float(annot_dict['visible_bounds']['height'])]
'''pts = torch.Tensor(np.asarray(data['joints'])[:20, :])
# pts[:, 0:2] -= 1 # Convert pts to zero based
# inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
# sf = scale * 200.0 / res[0] # res[0]=256
# center = center * 1.0 / sf
# scale = scale / sf = 256 / 200
# h = 200 * scale
bbox_xywh = data['img_bbox']'''
bbox_c = [bbox_xywh[0]+0.5*bbox_xywh[2], bbox_xywh[1]+0.5*bbox_xywh[3]]
bbox_max = max(bbox_xywh[2], bbox_xywh[3])
bbox_diag = math.sqrt(bbox_xywh[2]**2 + bbox_xywh[3]**2)
# bbox_s = bbox_max / 200. # the dog will fill the image -> bbox_max = 256
# bbox_s = bbox_diag / 200. # diagonal of the boundingbox will be 200
bbox_s = bbox_max / 200. * 256. / 200. # maximum side of the bbox will be 200
c = torch.Tensor(bbox_c)
s = bbox_s
# For single-person pose estimation with a centered/scaled figure
nparts = pts.size(0)
img = load_image(img_path) # CxHxW
# segmentation map (we reshape it to 3xHxW, such that we can do the
# same transformations as with the image)
if self.calc_seg:
raise NotImplementedError
seg = torch.Tensor(utils_stanext.get_seg_from_entry(data)[None, :, :])
seg = torch.cat(3*[seg])
r = 0
# self.is_train = False
do_flip = False
if self.do_augment:
s = s*torch.randn(1).mul_(sf).add_(1).clamp(1-sf, 1+sf)[0]
r = torch.randn(1).mul_(rf).clamp(-2*rf, 2*rf)[0] if random.random() <= 0.6 else 0
# Flip
if random.random() <= 0.5:
do_flip = True
img = fliplr(img)
if self.calc_seg:
seg = fliplr(seg)
# pts = shufflelr(pts, img.size(2), self.DATA_INFO.hflip_indices)
# remark: for BITE we figure out that a -1 was missing in the point mirroring term
# idea:
# image coordinates are 0, 1, 2, 3
# image size is 4
# the new point location for former 0 should be 3 and not 4!
pts = shufflelr(pts, img.size(2)-1, self.DATA_INFO.hflip_indices)
c[0] = img.size(2) - c[0] - 1
# Color
img[0, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
img[1, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
img[2, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
# Prepare image and groundtruth map
inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
inp = color_normalize(inp, self.DATA_INFO.rgb_mean, self.DATA_INFO.rgb_stddev)
if self.calc_seg:
seg = crop(seg, c, s, [self.inp_res, self.inp_res], rot=r)
# Generate ground truth
tpts = pts.clone()
target_weight = tpts[:, 2].clone().view(nparts, 1)
# cvpr version:
'''
target = torch.zeros(nparts, self.out_res, self.out_res)
for i in range(nparts):
# if tpts[i, 2] > 0: # This is evil!!
if tpts[i, 1] > 0:
tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2]+1, c, s, [self.out_res, self.out_res], rot=r, as_int=False))
target[i], vis = draw_labelmap(target[i], tpts[i]-1, self.sigma, type=self.label_type)
target_weight[i, 0] *= vis
# NEW:
target_new, vis_new = draw_multiple_labelmaps((self.out_res, self.out_res), tpts[:, :2]-1, self.sigma, type=self.label_type)
target_weight_new = tpts[:, 2].clone().view(nparts, 1) * vis_new
target_new[(target_weight_new==0).reshape((-1)), :, :] = 0
'''
target = torch.zeros(nparts, self.out_res, self.out_res)
for i in range(nparts):
# if tpts[i, 2] > 0: # This is evil!!
'''if tpts[i, 1] > 0:
tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2], c, s, [self.out_res, self.out_res], rot=r, as_int=False))
target[i], vis = draw_labelmap(target[i], tpts[i], self.sigma, type=self.label_type)
target_weight[i, 0] *= vis'''
if tpts[i, 1] > 0:
# this pytorch function (transforms) assumes that coordinates which start at 1 instead of 0!
tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2]+1, c, s, [self.out_res, self.out_res], rot=r, as_int=False)) - 1
target[i], vis = draw_labelmap(target[i], tpts[i], self.sigma, type=self.label_type)
target_weight[i, 0] *= vis
# Meta info
'''this_breed = self.breed_dict[name.split('/')[0]]'''
# add information about location within breed similarity matrix
'''folder_name = name.split('/')[0]
breed_name = folder_name.split(folder_name.split('-')[0] + '-')[1]
abbrev = COMPLETE_ABBREV_DICT[breed_name]
try:
sim_breed_index = COMPLETE_SUMMARY_BREEDS[abbrev]._ind_in_xlsx_matrix
except: # some breeds are not in the xlsx file
sim_breed_index = -1'''
# meta = {'index' : index, 'center' : c, 'scale' : s, 'do_flip' : do_flip, 'rot' : r, 'resolution' : [self.out_res, self.out_res], 'name' : name,
# 'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 'breed_index': this_breed['index']}
# meta = {'index' : index, 'center' : c, 'scale' : s, 'do_flip' : do_flip, 'rot' : r, 'resolution' : self.out_res,
# 'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 'breed_index': this_breed['index']}
# meta = {'index' : index, 'center' : c, 'scale' : s,
# 'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight,
# 'breed_index': this_breed['index'], 'sim_breed_index': sim_breed_index}
meta = {'index' : index, 'center' : c, 'scale' : s,
'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight}
# import pdb; pdb.set_trace()
if self.dataset_mode=='keyp_only':
'''
debugging_path = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/debugging/anipose/'
if self.is_train:
prefix = 'anipose_train_'
else:
prefix = 'anipose_test_'
save_input_image_with_keypoints(inp, meta['tpts'], out_path=debugging_path + prefix + str(index) + '.png', ratio_in_out=self.inp_res/self.out_res)
'''
return inp, target, meta
elif self.dataset_mode=='keyp_and_seg':
raise NotImplementedError
meta['silh'] = seg[0, :, :]
meta['name'] = name
return inp, target, meta
elif self.dataset_mode=='complete':
raise NotImplementedError
target_dict = meta
target_dict['silh'] = seg[0, :, :]
# NEW for silhouette loss
distmat_tofg = ndimage.distance_transform_edt(1-target_dict['silh']) # values between 0 and up to 100 or more
target_dict['silh_distmat_tofg'] = distmat_tofg
distmat_tobg = ndimage.distance_transform_edt(target_dict['silh'])
target_dict['silh_distmat_tobg'] = distmat_tobg
return inp, target_dict
else:
raise ValueError
def __len__(self):
if self.is_train:
return len(self.train_name_list) # len(self.train_list)
else:
return len(self.test_name_list) # len(self.valid_list)
|