Spaces:
Runtime error
Runtime error
File size: 14,005 Bytes
753fd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# evaluate test time optimization from refinement
# python src/test_time_optimization/evaluate_ttopt.py --workers 12 --save-images True --config refinement_cfg_test_withvertexwisegc_csaddnonflat.yaml --model-file-complete=cvpr23_dm39dnnv3barcv2b_refwithgcpervertisflat0morestanding0/checkpoint.pth.tar --ttopt-result-name ttoptv6_stanext_v16b
# python src/test_time_optimization/evaluate_ttopt.py --workers 12 --save-images True --config refinement_cfg_test_withvertexwisegc_csaddnonflat.yaml --model-file-complete=cvpr23_dm39dnnv3barcv2b_refwithgcpervertisflat0morestanding0/checkpoint.pth.tar --ttopt-result-name ttoptv6_stanext_v16
import argparse
import os.path
import json
import numpy as np
import pickle as pkl
from distutils.util import strtobool
import torch
from torch import nn
import torch.backends.cudnn
from torch.nn import DataParallel
from torch.utils.data import DataLoader
import pytorch3d as p3d
from collections import OrderedDict
import glob
from tqdm import tqdm
from dominate import document
from dominate.tags import *
from PIL import Image
from matplotlib import pyplot as plt
import trimesh
import cv2
import shutil
from pytorch3d.structures import Meshes
from pytorch3d.loss import mesh_edge_loss, mesh_laplacian_smoothing, mesh_normal_consistency
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..', 'src'))
from combined_model.train_main_image_to_3d_wbr_withref import do_validation_epoch
# from combined_model.model_shape_v7 import ModelImageTo3d_withshape_withproj
# from combined_model.model_shape_v7_withref import ModelImageTo3d_withshape_withproj
from combined_model.model_shape_v7_withref_withgraphcnn import ModelImageTo3d_withshape_withproj
from combined_model.loss_image_to_3d_withbreedrel import Loss
from combined_model.loss_image_to_3d_refinement import LossRef
from configs.barc_cfg_defaults import get_cfg_defaults, update_cfg_global_with_yaml, get_cfg_global_updated
from lifting_to_3d.utils.geometry_utils import rot6d_to_rotmat, rotmat_to_rot6d # , batch_rot2aa, geodesic_loss_R
# from test_time_optimization.utils_ttopt import get_evaluation_dataset, get_norm_dict
from stacked_hourglass.datasets.utils_dataset_selection import get_evaluation_dataset, get_norm_dict
from test_time_optimization.bite_inference_model_for_ttopt import BITEInferenceModel
from smal_pytorch.smal_model.smal_torch_new import SMAL
from configs.SMAL_configs import SMAL_MODEL_CONFIG
from smal_pytorch.renderer.differentiable_renderer import SilhRenderer
from test_time_optimization.utils.utils_ttopt import reset_loss_values, get_optimed_pose_with_glob
from combined_model.loss_utils.loss_utils import leg_sideway_error, leg_torsion_error, tail_sideway_error, tail_torsion_error, spine_torsion_error, spine_sideway_error
from combined_model.loss_utils.loss_utils_gc import LossGConMesh, calculate_plane_errors_batch
from combined_model.loss_utils.loss_arap import Arap_Loss
from combined_model.loss_utils.loss_laplacian_mesh_comparison import LaplacianCTF # (coarse to fine animal)
from graph_networks import graphcmr # .utils_mesh import Mesh
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints, save_input_image
from metrics.metrics import Metrics
from configs.SMAL_configs import EVAL_KEYPOINTS, KEYPOINT_GROUPS
ROOT_LOSS_WEIGH_PATH = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/src/configs/ttopt_loss_weights/'
def main(args):
# load configs
# step 1: load default configs
# step 2: load updates from .yaml file
path_config = os.path.join(get_cfg_defaults().barc_dir, 'src', 'configs', args.config)
update_cfg_global_with_yaml(path_config)
cfg = get_cfg_global_updated()
pck_thresh = 0.15
print('pck_thresh: ' + str(pck_thresh))
ROOT_IN_PATH = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/results/results_ttopt/' + args.ttopt_result_name + '/' # ttoptv6_debug_x8/'
ROOT_IN_PATH_DETAIL = ROOT_IN_PATH + 'details/'
ROOT_OUT_PATH = ROOT_IN_PATH + 'evaluation/'
if not os.path.exists(ROOT_OUT_PATH): os.makedirs(ROOT_OUT_PATH)
# NEW!!!
logscale_part_list = ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l']
# logscale_part_list = ['front_legs_l', 'front_legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l', 'back_legs_l', 'back_legs_f']
# Select the hardware device to use for training.
if torch.cuda.is_available() and cfg.device=='cuda':
device = torch.device('cuda', torch.cuda.current_device())
torch.backends.cudnn.benchmark = False # True
else:
device = torch.device('cpu')
print('structure_pose_net: ' + cfg.params.STRUCTURE_POSE_NET)
print('refinement network type: ' + cfg.params.REF_NET_TYPE)
print('smal_model_type: ' + cfg.smal.SMAL_MODEL_TYPE)
path_model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, args.model_file_complete)
# Disable gradient calculations.
# torch.set_grad_enabled(False)
# prepare dataset and dataset loadr
val_dataset, val_loader, len_val_dataset, test_name_list, stanext_data_info, stanext_acc_joints = get_evaluation_dataset(cfg.data.DATASET, cfg.data.VAL_OPT, cfg.data.V12, cfg.optim.BATCH_SIZE, args.workers)
len_data = len_val_dataset
# summarize information for normalization
norm_dict = get_norm_dict(stanext_data_info, device)
# prepare complete model
bite_model = BITEInferenceModel(cfg, path_model_file_complete, norm_dict)
# smal_model_type = bite_model.complete_model.smal.smal_model_type
smal_model_type = bite_model.smal_model_type
smal = SMAL(smal_model_type=smal_model_type, template_name='neutral', logscale_part_list=logscale_part_list).to(device)
silh_renderer = SilhRenderer(image_size=256).to(device)
# ----------------------------------------------------------------------------------
summary = {}
summary['pck'] = np.zeros((len_data))
summary['pck_by_part'] = {group:np.zeros((len_data)) for group in KEYPOINT_GROUPS}
summary['acc_sil_2d'] = np.zeros(len_data)
# Put the model in training mode.
# model.train()
# prepare progress bar
iterable = enumerate(val_loader)
progress = None
if True: # not quiet:
progress = tqdm(iterable, desc='Train', total=len(val_loader), ascii=True, leave=False)
iterable = progress
ind_img_tot = 0
# prepare variables, put them on the right device
my_step = 0
batch_size = cfg.optim.BATCH_SIZE
for index, (input, target_dict) in iterable:
for key in target_dict.keys():
if key == 'breed_index':
target_dict[key] = target_dict[key].long().to(device)
elif key in ['index', 'pts', 'tpts', 'target_weight', 'silh', 'silh_distmat_tofg', 'silh_distmat_tobg', 'sim_breed_index', 'img_border_mask']:
target_dict[key] = target_dict[key].float().to(device)
elif key == 'has_seg':
target_dict[key] = target_dict[key].to(device)
else:
pass
input = input.float().to(device)
# get starting values for the optimization
# -> here from barc, but could also be saved and loaded
preds_dict = bite_model.get_all_results(input)
res_normal_and_ref = bite_model.get_selected_results(preds_dict=preds_dict, result_networks=['normal', 'ref'])
res = bite_model.get_selected_results(preds_dict=preds_dict, result_networks=['ref'])['ref']
# --------------------------------------------------------------------
# ind_img = 0
batch_verts_smal = []
batch_faces_prep = []
batch_optimed_camera_flength = []
for ind_img in range(input.shape[0]):
name = (test_name_list[target_dict['index'][ind_img].long()]).replace('/', '__').split('.')[0]
print('ind_img_tot: ' + str(ind_img_tot) + ' -> ' + name)
ind_img_tot += 1
e_name = 'e000' # 'e300'
npy_file = ROOT_IN_PATH_DETAIL + name + '_flength_' + e_name +'.npy'
flength = np.load(npy_file)
optimed_camera_flength = torch.tensor(flength, device=device)
obj_file = ROOT_IN_PATH + name + '_res_' + e_name +'.obj'
verts, faces, aux = p3d.io.load_obj(obj_file)
verts_smal = verts[None, ...].to(device)
faces_prep = faces.verts_idx[None, ...].to(device)
batch_verts_smal.append(verts_smal)
batch_faces_prep.append(faces_prep)
batch_optimed_camera_flength.append(optimed_camera_flength)
# import pdb; pdb.set_trace()
verts_smal = torch.cat(batch_verts_smal, dim=0)
faces_prep = torch.cat(batch_faces_prep, dim=0)
optimed_camera_flength = torch.cat(batch_optimed_camera_flength, dim=0)
# get keypoint locations from mesh vertices
keyp_3d = smal.get_joints_from_verts(verts_smal, keyp_conf='olive')
# render silhouette and keypoints
pred_silh_images, pred_keyp_raw = silh_renderer(vertices=verts_smal, points=keyp_3d, faces=faces_prep, focal_lengths=optimed_camera_flength)
pred_keyp = pred_keyp_raw[:, :24, :]
# --------------- calculate iou and pck values --------------------
gt_keypoints_256 = target_dict['tpts'][:, :, :2] / 64. * (256. - 1)
gt_keypoints = torch.cat((gt_keypoints_256, target_dict['tpts'][:, :, 2:3]), dim=2)
# prepare silhouette for IoU calculation - predicted as well as ground truth
has_seg = target_dict['has_seg']
img_border_mask = target_dict['img_border_mask'][:, 0, :, :]
gtseg = target_dict['silh']
synth_silhouettes = pred_silh_images[:, 0, :, :] # pred_silh[:, 0, :, :] # output_reproj['silh']
synth_silhouettes[synth_silhouettes>0.5] = 1
synth_silhouettes[synth_silhouettes<0.5] = 0
# calculate PCK as well as IoU (similar to WLDO)
preds = {}
preds['acc_PCK'] = Metrics.PCK(
pred_keyp, gt_keypoints,
gtseg, has_seg, idxs=EVAL_KEYPOINTS,
thresh_range=[pck_thresh], # [0.15],
)
preds['acc_IOU'] = Metrics.IOU(
synth_silhouettes, gtseg,
img_border_mask, mask=has_seg
)
for group, group_kps in KEYPOINT_GROUPS.items():
preds[f'{group}_PCK'] = Metrics.PCK(
pred_keyp, gt_keypoints, gtseg, has_seg,
thresh_range=[pck_thresh], # [0.15],
idxs=group_kps
)
curr_batch_size = pred_keyp.shape[0]
if not (preds['acc_PCK'].data.cpu().numpy().shape == (summary['pck'][my_step * batch_size:my_step * batch_size + curr_batch_size]).shape):
import pdb; pdb.set_trace()
summary['pck'][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds['acc_PCK'].data.cpu().numpy()
summary['acc_sil_2d'][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds['acc_IOU'].data.cpu().numpy()
for part in summary['pck_by_part']:
summary['pck_by_part'][part][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds[f'{part}_PCK'].data.cpu().numpy()
my_step += 1
# import pdb; pdb.set_trace()
iou = np.nanmean(summary['acc_sil_2d'])
pck = np.nanmean(summary['pck'])
pck_legs = np.nanmean(summary['pck_by_part']['legs'])
pck_tail = np.nanmean(summary['pck_by_part']['tail'])
pck_ears = np.nanmean(summary['pck_by_part']['ears'])
pck_face = np.nanmean(summary['pck_by_part']['face'])
print('------------------------------------------------')
print("iou: {:.2f}".format(iou*100))
print(' ')
print("pck: {:.2f}".format(pck*100))
print(' ')
print("pck_legs: {:.2f}".format(pck_legs*100))
print("pck_tail: {:.2f}".format(pck_tail*100))
print("pck_ears: {:.2f}".format(pck_ears*100))
print("pck_face: {:.2f}".format(pck_face*100))
print('------------------------------------------------')
# save results in a .txt file
with open(ROOT_OUT_PATH + "a_evaluation_" + e_name + ".txt", "w") as text_file:
print("iou: {:.2f}".format(iou*100), file=text_file)
print("pck: {:.2f}".format(pck*100), file=text_file)
print("pck_legs: {:.2f}".format(pck_legs*100), file=text_file)
print("pck_tail: {:.2f}".format(pck_tail*100), file=text_file)
print("pck_ears: {:.2f}".format(pck_ears*100), file=text_file)
print("pck_face: {:.2f}".format(pck_face*100), file=text_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evaluate a stacked hourglass model.')
parser.add_argument('--model-file-complete', default='', type=str, metavar='PATH',
help='path to saved model weights')
parser.add_argument('--ttopt-result-name', default='', type=str, metavar='PATH',
help='path to saved ttopt results')
parser.add_argument('-cg', '--config', default='barc_cfg_test.yaml', type=str, metavar='PATH',
help='name of config file (default: barc_cfg_test.yaml within src/configs folder)')
parser.add_argument('--save-images', default='True', type=lambda x: bool(strtobool(x)),
help='bool indicating if images should be saved')
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--metrics', '-m', metavar='METRICS', default='all',
choices=['all', None],
help='model architecture')
main(parser.parse_args())
|