runaksh commited on
Commit
c08f90f
·
1 Parent(s): 9a1302f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio
3
+ from PIL import Image
4
+ from timeit import default_timer as timer
5
+ from tensorflow import keras
6
+ import torch
7
+ from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM, AutoModelForSequenceClassification, create_optimizer, DataCollatorForSeq2Seq
8
+ import numpy as np
9
+
10
+ loaded_model = AutoModelForSequenceClassification.from_pretrained("runaksh/financial_summary_T5_base")
11
+ loaded_tokenizer = AutoTokenizer.from_pretrained("runaksh/financial_summary_T5_base")
12
+
13
+ # Function for generating summary
14
+ def generate_summary(text,min_length=55,max_length=80):
15
+ text = "summarize: "+text
16
+ input = tokenizer(text,max_length=512,truncation=True,return_tensors="tf").input_ids
17
+ op=model.generate(input,min_length=min_length,max_length=max_length)
18
+ decoded_op = tokenizer.batch_decode(op,skip_special_tokens=True)
19
+ return decoded_op
20
+
21
+ title = "Financial News Summary"
22
+ description = "Enter the news"
23
+
24
+ # Gradio elements
25
+
26
+ # Input from user
27
+ in_prompt = gradio.components.Textbox(lines=2, label='Enter the News')
28
+
29
+ # Output response
30
+ out_response = gradio.components.Textbox(label='Summary')
31
+
32
+ # Gradio interface to generate UI link
33
+ iface = gradio.Interface(fn=generate_summary,
34
+ inputs = in_prompt,
35
+ outputs = out_response,
36
+ title=title,
37
+ description=description
38
+ )
39
+
40
+ iface.launch(debug = True)