Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio
|
3 |
+
from PIL import Image
|
4 |
+
from timeit import default_timer as timer
|
5 |
+
from tensorflow import keras
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM, AutoModelForSequenceClassification, create_optimizer, DataCollatorForSeq2Seq
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
loaded_model = AutoModelForSequenceClassification.from_pretrained("runaksh/financial_summary_T5_base")
|
11 |
+
loaded_tokenizer = AutoTokenizer.from_pretrained("runaksh/financial_summary_T5_base")
|
12 |
+
|
13 |
+
# Function for generating summary
|
14 |
+
def generate_summary(text,min_length=55,max_length=80):
|
15 |
+
text = "summarize: "+text
|
16 |
+
input = tokenizer(text,max_length=512,truncation=True,return_tensors="tf").input_ids
|
17 |
+
op=model.generate(input,min_length=min_length,max_length=max_length)
|
18 |
+
decoded_op = tokenizer.batch_decode(op,skip_special_tokens=True)
|
19 |
+
return decoded_op
|
20 |
+
|
21 |
+
title = "Financial News Summary"
|
22 |
+
description = "Enter the news"
|
23 |
+
|
24 |
+
# Gradio elements
|
25 |
+
|
26 |
+
# Input from user
|
27 |
+
in_prompt = gradio.components.Textbox(lines=2, label='Enter the News')
|
28 |
+
|
29 |
+
# Output response
|
30 |
+
out_response = gradio.components.Textbox(label='Summary')
|
31 |
+
|
32 |
+
# Gradio interface to generate UI link
|
33 |
+
iface = gradio.Interface(fn=generate_summary,
|
34 |
+
inputs = in_prompt,
|
35 |
+
outputs = out_response,
|
36 |
+
title=title,
|
37 |
+
description=description
|
38 |
+
)
|
39 |
+
|
40 |
+
iface.launch(debug = True)
|