runaksh's picture
Create app.py
621f795
raw
history blame
1.1 kB
import gradio
from transformers import pipeline
username = "runaksh"
repo_name = "finetuned-sentiment-model"
repo_path = username+ '/' + repo_name
sentiment_model = pipeline(model= repo_path)
# Function for response generation
def predict_sentiment(text):
result = sentiment_model(text)
if result[0]['label'].endswith('0'):
return 'Negative'
else:
return 'Positive'
# Input from user
in_prompt = gradio.components.Textbox(lines=10, placeholder=None, label='Enter review text')
# Output response
out_response = gradio.components.Textbox(type="text", label='Sentiment')
# Gradio interface to generate UI link
title = "Sentiment Classification"
description = "Analyse sentiment of the given review"
iface = gradio.Interface(fn = predict_sentiment,
inputs = [in_prompt],
outputs = [out_response],
title = title,
description = description)
iface.launch(debug = True)#, server_name = "0.0.0.0", server_port = 8001) # Ref. for parameters: https://www.gradio.app/docs/interface