Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,75 @@
|
|
|
|
1 |
import gradio
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
username = "runaksh"
|
5 |
repo_name = "finetuned-sentiment-model"
|
6 |
repo_path = username+ '/' + repo_name
|
7 |
-
|
|
|
|
|
|
|
8 |
|
9 |
# Function for response generation
|
10 |
def predict_sentiment(text):
|
11 |
-
result =
|
12 |
if result[0]['label'].endswith('0'):
|
13 |
return 'Negative'
|
14 |
else:
|
15 |
return 'Positive'
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
# Input from user
|
18 |
-
|
19 |
|
20 |
# Output response
|
21 |
-
|
22 |
|
23 |
# Gradio interface to generate UI link
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
inputs = [in_prompt],
|
29 |
-
outputs = [out_response],
|
30 |
-
title = title,
|
31 |
-
description = description)
|
32 |
|
33 |
-
iface.launch(debug = True)#, server_name = "0.0.0.0", server_port = 8001) # Ref. for parameters: https://www.gradio.app/docs/interface
|
|
|
1 |
+
import os
|
2 |
import gradio
|
3 |
+
from PIL import Image
|
4 |
+
from timeit import default_timer as timer
|
5 |
+
from tensorflow import keras
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
8 |
+
import numpy as np
|
9 |
|
10 |
username = "runaksh"
|
11 |
repo_name = "finetuned-sentiment-model"
|
12 |
repo_path = username+ '/' + repo_name
|
13 |
+
model_1 = pipeline(model= repo_path)
|
14 |
+
|
15 |
+
model_2 = AutoModelForSequenceClassification.from_pretrained("runaksh/Symptom-2-disease_distilBERT")
|
16 |
+
tokenizer_2 = AutoTokenizer.from_pretrained("runaksh/Symptom-2-disease_distilBERT")
|
17 |
|
18 |
# Function for response generation
|
19 |
def predict_sentiment(text):
|
20 |
+
result = model_1(text)
|
21 |
if result[0]['label'].endswith('0'):
|
22 |
return 'Negative'
|
23 |
else:
|
24 |
return 'Positive'
|
25 |
|
26 |
+
def predict(sample, validate=True):
|
27 |
+
classifier = pipeline("text-classification", model=model_2, tokenizer=tokenizer_2)
|
28 |
+
pred = classifier(sample)[0]['label']
|
29 |
+
return pred
|
30 |
+
|
31 |
# Input from user
|
32 |
+
in_prompt_1 = gradio.components.Textbox(lines=10, placeholder=None, label='Enter review text')
|
33 |
|
34 |
# Output response
|
35 |
+
out_response_1 = gradio.components.Textbox(type="text", label='Sentiment')
|
36 |
|
37 |
# Gradio interface to generate UI link
|
38 |
+
title_1 = "Sentiment Classification"
|
39 |
+
description_1 = "Analyse sentiment of the given review"
|
40 |
+
|
41 |
+
iface_1 = gradio.Interface(fn = predict_sentiment,
|
42 |
+
inputs = [in_prompt_1],
|
43 |
+
outputs = [out_response_1],
|
44 |
+
title = title_1,
|
45 |
+
description = description_1)
|
46 |
+
|
47 |
+
title_2 = "Symptoms and Disease"
|
48 |
+
description_2 = "Enter the Symptoms to know the disease"
|
49 |
+
|
50 |
+
# Input from user
|
51 |
+
in_prompt_2 = gradio.components.Textbox(lines=2, label='Enter the Symptoms')
|
52 |
+
|
53 |
+
# Output response
|
54 |
+
out_response_2 = gradio.components.Textbox(label='Disease')
|
55 |
+
|
56 |
+
# Gradio interface to generate UI link
|
57 |
+
iface_2 = gradio.Interface(fn=predict,
|
58 |
+
inputs = in_prompt_2,
|
59 |
+
outputs = out_response_2,
|
60 |
+
title=title_2,
|
61 |
+
description=description_2
|
62 |
+
)
|
63 |
+
|
64 |
+
combined_interface = gr.Interface(
|
65 |
+
[
|
66 |
+
iface_1,
|
67 |
+
iface_2
|
68 |
+
],
|
69 |
+
title="Multiple Models Interface",
|
70 |
+
description="This interface showcases multiple models"
|
71 |
+
)
|
72 |
|
73 |
+
combined_interface.launch(debug = True)
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
#iface.launch(debug = True)#, server_name = "0.0.0.0", server_port = 8001) # Ref. for parameters: https://www.gradio.app/docs/interface
|