Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
from timeit import default_timer as timer
|
5 |
+
from tensorflow import keras
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
username = "runaksh"
|
11 |
+
repo_name = "finetuned-sentiment-model"
|
12 |
+
repo_path = username+ '/' + repo_name
|
13 |
+
model_1 = pipeline(model= repo_path)
|
14 |
+
|
15 |
+
model_2 = AutoModelForSequenceClassification.from_pretrained("runaksh/Symptom-2-disease_distilBERT")
|
16 |
+
tokenizer_2 = AutoTokenizer.from_pretrained("runaksh/Symptom-2-disease_distilBERT")
|
17 |
+
|
18 |
+
# Function for response generation
|
19 |
+
def predict_sentiment(text):
|
20 |
+
result = model_1(text)
|
21 |
+
if result[0]['label'].endswith('0'):
|
22 |
+
return 'Negative'
|
23 |
+
else:
|
24 |
+
return 'Positive'
|
25 |
+
|
26 |
+
def predict(sample, validate=True):
|
27 |
+
pred = classifier(sample)[0]['label']
|
28 |
+
return pred
|
29 |
+
|
30 |
+
def make_block(dem):
|
31 |
+
with dem:
|
32 |
+
gr.Markdown("Practicing for Capstone")
|
33 |
+
with gr.Tabs():
|
34 |
+
with gr.TabItem("Sentiment Classification"):
|
35 |
+
with gr.Row():
|
36 |
+
in_prompt_1 = gr.components.Textbox(lines=10, placeholder=None, label='Enter review text')
|
37 |
+
out_response_1 = gr.components.Textbox(type="text", label='Sentiment')
|
38 |
+
b1 = gr.Button("Enter")
|
39 |
+
|
40 |
+
with gr.TabItem("Symptoms and Disease Classification"):
|
41 |
+
with gr.Row():
|
42 |
+
in_prompt_2 = gr.components.Textbox(lines=2, label='Enter the Symptoms')
|
43 |
+
out_response_2 = gr.components.Textbox(label='Disease')
|
44 |
+
b2 = gr.Button("Enter")
|
45 |
+
b1.click(predict_sentiment, inputs=in_prompt_1, outputs=out_response_1)
|
46 |
+
b2.click(predict, inputs=in_prompt_2, outputs=out_response_2)
|
47 |
+
|
48 |
+
if __name__ == '__main__':
|
49 |
+
model_1 = pipeline(model= repo_path)
|
50 |
+
classifier = pipeline("text-classification", model=model_2, tokenizer=tokenizer_2)
|
51 |
+
|
52 |
+
demo = gr.Blocks()
|
53 |
+
make_block(demo)
|
54 |
+
demo.launch()
|