runaksh commited on
Commit
eccca61
·
1 Parent(s): 52b1f5b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from PIL import Image
4
+ from timeit import default_timer as timer
5
+ from tensorflow import keras
6
+ import torch
7
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
8
+ import numpy as np
9
+
10
+ username = "runaksh"
11
+ repo_name = "finetuned-sentiment-model"
12
+ repo_path = username+ '/' + repo_name
13
+ model_1 = pipeline(model= repo_path)
14
+
15
+ model_2 = AutoModelForSequenceClassification.from_pretrained("runaksh/Symptom-2-disease_distilBERT")
16
+ tokenizer_2 = AutoTokenizer.from_pretrained("runaksh/Symptom-2-disease_distilBERT")
17
+
18
+ # Function for response generation
19
+ def predict_sentiment(text):
20
+ result = model_1(text)
21
+ if result[0]['label'].endswith('0'):
22
+ return 'Negative'
23
+ else:
24
+ return 'Positive'
25
+
26
+ def predict(sample, validate=True):
27
+ pred = classifier(sample)[0]['label']
28
+ return pred
29
+
30
+ def make_block(dem):
31
+ with dem:
32
+ gr.Markdown("Practicing for Capstone")
33
+ with gr.Tabs():
34
+ with gr.TabItem("Sentiment Classification"):
35
+ with gr.Row():
36
+ in_prompt_1 = gr.components.Textbox(lines=10, placeholder=None, label='Enter review text')
37
+ out_response_1 = gr.components.Textbox(type="text", label='Sentiment')
38
+ b1 = gr.Button("Enter")
39
+
40
+ with gr.TabItem("Symptoms and Disease Classification"):
41
+ with gr.Row():
42
+ in_prompt_2 = gr.components.Textbox(lines=2, label='Enter the Symptoms')
43
+ out_response_2 = gr.components.Textbox(label='Disease')
44
+ b2 = gr.Button("Enter")
45
+ b1.click(predict_sentiment, inputs=in_prompt_1, outputs=out_response_1)
46
+ b2.click(predict, inputs=in_prompt_2, outputs=out_response_2)
47
+
48
+ if __name__ == '__main__':
49
+ model_1 = pipeline(model= repo_path)
50
+ classifier = pipeline("text-classification", model=model_2, tokenizer=tokenizer_2)
51
+
52
+ demo = gr.Blocks()
53
+ make_block(demo)
54
+ demo.launch()