import os import gradio as gr from PIL import Image from timeit import default_timer as timer from tensorflow import keras import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline import numpy as np username = "runaksh" repo_name = "finetuned-sentiment-model" repo_path = username+ '/' + repo_name model_1 = pipeline(model= repo_path) model_2 = AutoModelForSequenceClassification.from_pretrained("runaksh/Symptom-2-disease_distilBERT") tokenizer_2 = AutoTokenizer.from_pretrained("runaksh/Symptom-2-disease_distilBERT") # Function for response generation def predict_sentiment(text): result = model_1(text) if result[0]['label'].endswith('0'): return 'Negative' else: return 'Positive' def predict(sample, validate=True): pred = classifier(sample)[0]['label'] return pred def make_block(dem): with dem: gr.Markdown("Practicing for Capstone") with gr.Tabs(): with gr.TabItem("Sentiment Classification"): with gr.Row(): in_prompt_1 = gr.components.Textbox(lines=10, placeholder=None, label='Enter review text') out_response_1 = gr.components.Textbox(type="text", label='Sentiment') b1 = gr.Button("Enter") with gr.TabItem("Symptoms and Disease Classification"): with gr.Row(): in_prompt_2 = gr.components.Textbox(lines=2, label='Enter the Symptoms') out_response_2 = gr.components.Textbox(label='Disease') b2 = gr.Button("Enter") b1.click(predict_sentiment, inputs=in_prompt_1, outputs=out_response_1) b2.click(predict, inputs=in_prompt_2, outputs=out_response_2) if __name__ == '__main__': model_1 = pipeline(model= repo_path) classifier = pipeline("text-classification", model=model_2, tokenizer=tokenizer_2) demo = gr.Blocks() make_block(demo) demo.launch()