Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,12 @@
|
|
1 |
-
|
2 |
-
|
3 |
import gradio
|
4 |
import joblib
|
5 |
from xgboost import XGBClassifier
|
6 |
import pandas as pd
|
7 |
import numpy as np
|
8 |
|
9 |
-
from sklearn.metrics import f1_score, precision_score, recall_score
|
10 |
-
import prometheus_client as prom
|
11 |
-
|
12 |
-
app = FastAPI()
|
13 |
-
|
14 |
-
username = "runaksh"
|
15 |
-
repo_name = "Patientsurvival-model"
|
16 |
-
repo_path = username+ '/' + repo_name
|
17 |
-
xgb_model_loaded = joblib.load("xgboost-model.pkl")
|
18 |
-
|
19 |
-
import pandas as pd
|
20 |
-
|
21 |
-
test_data = pd.read_csv("test_data.csv")
|
22 |
-
|
23 |
-
f1_metric = prom.Gauge('sentiment_f1_score', 'F1 score for random 100 test samples')
|
24 |
-
precision_metric = prom.Gauge('sentiment_precision_score', 'Precision score for random 100 test samples')
|
25 |
-
recall_metric = prom.Gauge('sentiment_recall_score', 'Recall score for random 100 test samples')
|
26 |
-
|
27 |
-
|
28 |
-
# Function for response generation
|
29 |
# Load your trained model
|
|
|
30 |
|
31 |
def bol_to_int(bol):
|
32 |
if bol==True:
|
@@ -51,27 +31,6 @@ def predict_death_event(feature1, feature2, feature3,feature4, feature5, feature
|
|
51 |
y_pred = xgb_model_loaded.predict(df)[0]
|
52 |
return y_pred
|
53 |
|
54 |
-
# Function for updating metrics
|
55 |
-
def update_metrics():
|
56 |
-
global test_data
|
57 |
-
test = test_data.sample(50)
|
58 |
-
test_text = test['Text'].values
|
59 |
-
test_pred = sentiment_model(list(test_text))
|
60 |
-
pred_labels = [int(pred['label'].split("_")[1]) for pred in test_pred]
|
61 |
-
f1 = f1_score(test['labels'], pred_labels).round(3)
|
62 |
-
precision = precision_score(test['labels'], pred_labels).round(3)
|
63 |
-
recall = recall_score(test['labels'], pred_labels).round(3)
|
64 |
-
|
65 |
-
f1_metric.set(f1)
|
66 |
-
precision_metric.set(precision)
|
67 |
-
recall_metric.set(recall)
|
68 |
-
|
69 |
-
|
70 |
-
@app.get("/metrics")
|
71 |
-
async def get_metrics():
|
72 |
-
update_metrics()
|
73 |
-
return Response(media_type="text/plain", content= prom.generate_latest())
|
74 |
-
|
75 |
# Gradio interface to generate UI link
|
76 |
title = "Patient Survival Prediction"
|
77 |
description = "Predict survival of patient with heart failure, given their clinical record"
|
@@ -94,11 +53,5 @@ iface = gradio.Interface(fn = predict_death_event,
|
|
94 |
title = title,
|
95 |
description = description)
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
#iface.launch(server_name = "0.0.0.0", server_port = 8001) # Ref. for parameters: https://www.gradio.app/docs/interface
|
100 |
-
|
101 |
-
if __name__ == "__main__":
|
102 |
-
# Use this for debugging purposes only
|
103 |
-
import uvicorn
|
104 |
-
uvicorn.run(app, host="0.0.0.0", port=8001)
|
|
|
1 |
+
# Import the libraries
|
|
|
2 |
import gradio
|
3 |
import joblib
|
4 |
from xgboost import XGBClassifier
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Load your trained model
|
9 |
+
xgb_model_loaded = joblib.load("xgboost-model.pkl")
|
10 |
|
11 |
def bol_to_int(bol):
|
12 |
if bol==True:
|
|
|
31 |
y_pred = xgb_model_loaded.predict(df)[0]
|
32 |
return y_pred
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Gradio interface to generate UI link
|
35 |
title = "Patient Survival Prediction"
|
36 |
description = "Predict survival of patient with heart failure, given their clinical record"
|
|
|
53 |
title = title,
|
54 |
description = description)
|
55 |
|
56 |
+
#iface.launch(debug=True)
|
57 |
+
iface.launch(server_name = "0.0.0.0", server_port = 8001) # Ref. for parameters: https://www.gradio.app/docs/interface
|
|
|
|
|
|
|
|
|
|
|
|