Upload ResumeCode.txt
Browse files- ResumeCode.txt +214 -0
ResumeCode.txt
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install opendatasets
|
2 |
+
|
3 |
+
#!pip install wandb
|
4 |
+
|
5 |
+
!pip install transformers[torch]
|
6 |
+
|
7 |
+
!pip install evaluate
|
8 |
+
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
+
import os
|
12 |
+
import random
|
13 |
+
from datasets import Dataset
|
14 |
+
import opendatasets as od
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from transformers import (
|
19 |
+
AutoTokenizer,
|
20 |
+
AutoModelForSequenceClassification,
|
21 |
+
TrainingArguments,
|
22 |
+
Trainer,
|
23 |
+
DataCollatorWithPadding,
|
24 |
+
pipeline
|
25 |
+
)
|
26 |
+
import evaluate
|
27 |
+
|
28 |
+
plt.style.use('seaborn-v0_8')
|
29 |
+
|
30 |
+
from sklearn.model_selection import train_test_split
|
31 |
+
from sklearn.preprocessing import LabelEncoder
|
32 |
+
from sklearn.naive_bayes import MultinomialNB
|
33 |
+
from sklearn import metrics
|
34 |
+
from sklearn.metrics import accuracy_score
|
35 |
+
from pandas.plotting import scatter_matrix
|
36 |
+
from sklearn import metrics
|
37 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
38 |
+
from matplotlib.gridspec import GridSpec
|
39 |
+
import nltk
|
40 |
+
nltk.download('stopwords')
|
41 |
+
nltk.download('punkt')
|
42 |
+
from nltk.corpus import stopwords
|
43 |
+
import string
|
44 |
+
from wordcloud import WordCloud
|
45 |
+
|
46 |
+
DIRECTORY = '/content/UpdatedResumeDataSet.csv'
|
47 |
+
MODEL_NAME = 'distilbert-base-uncased'
|
48 |
+
BATCH_SIZE = 32
|
49 |
+
LR = 2e-5
|
50 |
+
EPOCHS = 10
|
51 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
+
|
53 |
+
# read the dataset
|
54 |
+
df = pd.read_csv('UpdatedResumeDataSet.csv')
|
55 |
+
print(df.shape)
|
56 |
+
df.head(10) # first 10 rows
|
57 |
+
|
58 |
+
# Display the distinct categories of resume
|
59 |
+
df['Category'].unique()
|
60 |
+
|
61 |
+
# Display the distinct categories of resume and the number of records belonging to each category
|
62 |
+
df['Category'].value_counts()
|
63 |
+
|
64 |
+
import seaborn as sns
|
65 |
+
|
66 |
+
sns.countplot(y = df['Category'], data = df['Resume'])
|
67 |
+
|
68 |
+
# Convert all characters to lowercase
|
69 |
+
def convert_lower(text):
|
70 |
+
return text.lower()
|
71 |
+
|
72 |
+
df['Resume'] = df['Resume'].apply(convert_lower)
|
73 |
+
|
74 |
+
import re
|
75 |
+
def cleanResume(resumeText):
|
76 |
+
resumeText = re.sub(r'http\S+', '', resumeText,flags = re.MULTILINE) # remove URLs
|
77 |
+
resumeText = re.sub('RT|cc', '', resumeText) # remove RT and cc
|
78 |
+
resumeText = re.sub('#\S+', '', resumeText) # remove hashtags
|
79 |
+
resumeText = re.sub('@\S+', '', resumeText) # remove mentions
|
80 |
+
resumeText = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), '', resumeText) # remove punctuations
|
81 |
+
resumeText = re.sub('â\S+', '', resumeText) # remove â¢
|
82 |
+
resumeText = re.sub('+', '', resumeText) # remove
|
83 |
+
resumeText = re.sub('\s+', ' ', resumeText) # remove extra whitespace
|
84 |
+
|
85 |
+
return resumeText
|
86 |
+
|
87 |
+
# apply the function defined above and save the
|
88 |
+
df['cleaned_resume'] = df['Resume'].apply(cleanResume)
|
89 |
+
|
90 |
+
# stop words
|
91 |
+
stopword_list = nltk.corpus.stopwords.words('english')
|
92 |
+
print(stopword_list)
|
93 |
+
|
94 |
+
# removing the stopwords
|
95 |
+
from nltk.tokenize import word_tokenize
|
96 |
+
|
97 |
+
def remove_stopwords(text, is_lower_case=False):
|
98 |
+
# splitting strings into tokens (list of words)
|
99 |
+
tokens = word_tokenize(text)
|
100 |
+
tokens = [token.strip() for token in tokens]
|
101 |
+
filtered_tokens = [token for token in tokens if token not in stopword_list]
|
102 |
+
filtered_text = ' '.join(filtered_tokens)
|
103 |
+
return filtered_text
|
104 |
+
|
105 |
+
# apply function on cleaned resume to remove stopwords
|
106 |
+
df['text'] = df['cleaned_resume'].apply(remove_stopwords)
|
107 |
+
df['label'] = df['Category']
|
108 |
+
|
109 |
+
# reorder dataframe columns
|
110 |
+
df = df[['text', 'label']]
|
111 |
+
|
112 |
+
# view shape
|
113 |
+
df.shape
|
114 |
+
|
115 |
+
# view number of classes
|
116 |
+
n_classes = df['label'].nunique()
|
117 |
+
print(f"Number of Resume classes: {n_classes}")
|
118 |
+
|
119 |
+
# view some statistics about are texts
|
120 |
+
lengths = df['text'].apply(lambda x: len(x))
|
121 |
+
print(
|
122 |
+
f'Max text length: {lengths.max()}\nMin text length: {lengths.min()}\nAvg text length: {lengths.mean():.2f}'
|
123 |
+
)
|
124 |
+
|
125 |
+
# create mappings
|
126 |
+
id2label = {idx: label for idx, label in enumerate(df['label'].unique())}
|
127 |
+
label2id = {label: idx for idx, label in id2label.items()}
|
128 |
+
|
129 |
+
# label encode our labels
|
130 |
+
df['label'] = df['label'].map(label2id)
|
131 |
+
|
132 |
+
# create and split dataset
|
133 |
+
dataset = Dataset.from_pandas(df).train_test_split(train_size=0.8)
|
134 |
+
print(dataset)
|
135 |
+
|
136 |
+
# initialize tokenizer
|
137 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
138 |
+
|
139 |
+
# Tokenize and encode the dataset
|
140 |
+
def tokenize(batch):
|
141 |
+
tokenized_batch = tokenizer(batch['text'], padding=True, truncation=True)
|
142 |
+
return tokenized_batch
|
143 |
+
|
144 |
+
dataset_enc = dataset.map(tokenize, batched=True)
|
145 |
+
|
146 |
+
print(dataset_enc)
|
147 |
+
|
148 |
+
accuracy = evaluate.load('accuracy')
|
149 |
+
|
150 |
+
def compute_metrics(eval_pred):
|
151 |
+
predictions, labels = eval_pred
|
152 |
+
predictions = np.argmax(predictions, axis=1)
|
153 |
+
return accuracy.compute(predictions=predictions, references=labels)
|
154 |
+
|
155 |
+
# define model
|
156 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
157 |
+
MODEL_NAME,
|
158 |
+
num_labels=n_classes,
|
159 |
+
id2label=id2label,
|
160 |
+
label2id=label2id
|
161 |
+
)
|
162 |
+
|
163 |
+
model.to(DEVICE)
|
164 |
+
|
165 |
+
# define collator function
|
166 |
+
collator_fn = DataCollatorWithPadding(tokenizer, return_tensors='pt')
|
167 |
+
|
168 |
+
pip install accelerate -U
|
169 |
+
|
170 |
+
import accelerate
|
171 |
+
import transformers
|
172 |
+
|
173 |
+
transformers.__version__, accelerate.__version__
|
174 |
+
|
175 |
+
from transformers import TrainingArguments
|
176 |
+
|
177 |
+
training_args = TrainingArguments(
|
178 |
+
output_dir = "Resume_training",
|
179 |
+
learning_rate=LR,
|
180 |
+
per_device_train_batch_size= BATCH_SIZE,
|
181 |
+
per_device_eval_batch_size = BATCH_SIZE,
|
182 |
+
num_train_epochs = EPOCHS,
|
183 |
+
weight_decay = 0.01,
|
184 |
+
evaluation_strategy = "epoch",
|
185 |
+
save_strategy = "epoch",
|
186 |
+
load_best_model_at_end = True,
|
187 |
+
push_to_hub = False,
|
188 |
+
report_to="none"
|
189 |
+
)
|
190 |
+
|
191 |
+
trainer = Trainer(
|
192 |
+
model=model,
|
193 |
+
args=training_args,
|
194 |
+
train_dataset=dataset_enc["train"],
|
195 |
+
eval_dataset=dataset_enc["test"],
|
196 |
+
tokenizer=tokenizer,
|
197 |
+
data_collator=collator_fn,
|
198 |
+
compute_metrics=compute_metrics
|
199 |
+
)
|
200 |
+
|
201 |
+
trainer.train()
|
202 |
+
|
203 |
+
trainer.save_model('ResumeClassification_distilBERT')
|
204 |
+
|
205 |
+
trainer.evaluate()
|
206 |
+
|
207 |
+
def predict(sample, validate=True):
|
208 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
209 |
+
pred = classifier(sample)[0]['label']
|
210 |
+
return pred
|
211 |
+
|
212 |
+
sample1 = "I have working expereince in Java and javascript"
|
213 |
+
|
214 |
+
predict(sample1)
|