Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""gradio_deploy.ipynb
|
3 |
+
Automatically generated by Colaboratory.
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
import gradio
|
7 |
+
from PIL import Image
|
8 |
+
from timeit import default_timer as timer
|
9 |
+
from tensorflow import keras
|
10 |
+
import torch
|
11 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
loaded_model = AutoModelWithLMHead.from_pretrained("runaksh/Symptom-2-disease_distilBERT")
|
15 |
+
loaded_tokenizer = AutoTokenizer.from_pretrained("runaksh/Symptom-2-disease_distilBERT")
|
16 |
+
|
17 |
+
# Function for class prediction
|
18 |
+
def predict(sample, validate=True):
|
19 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
20 |
+
pred = classifier(sample)[0]['label']
|
21 |
+
return pred
|
22 |
+
|
23 |
+
title = "Symptoms and Disease"
|
24 |
+
description = "Enter the Symptoms to know the associated disease"
|
25 |
+
|
26 |
+
# Gradio elements
|
27 |
+
|
28 |
+
# Input from user
|
29 |
+
in_prompt = gradio.inputs.Textbox(lines=2, label='Enter the Symptoms')
|
30 |
+
|
31 |
+
# Output response
|
32 |
+
out_response = gradio.outputs.Textbox(label='Disease')
|
33 |
+
|
34 |
+
# Gradio interface to generate UI link
|
35 |
+
iface = gradio.Interface(fn=predict,
|
36 |
+
inputs = in_prompt,
|
37 |
+
outputs = out_response
|
38 |
+
)
|
39 |
+
|
40 |
+
iface.launch(debug = True)
|