Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,20 @@ import requests
|
|
4 |
|
5 |
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
6 |
loaded_model = ViTModel.from_pretrained("runaksh/chest_xray_pneumonia_detection")
|
7 |
-
inputs = feature_extractor(images=image, return_tensors="pt")
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Create title, description and article strings
|
12 |
title = "Classification Demo"
|
13 |
description = "XRay classification"
|
14 |
|
15 |
# Create the Gradio demo
|
16 |
-
demo = gr.Interface(fn=
|
17 |
inputs=gr.Image(type='filepath'), # what are the inputs?
|
18 |
outputs=[gr.Label(label="Predictions"), # what are the outputs?
|
19 |
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
|
|
|
4 |
|
5 |
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
6 |
loaded_model = ViTModel.from_pretrained("runaksh/chest_xray_pneumonia_detection")
|
7 |
+
#inputs = feature_extractor(images=image, return_tensors="pt")
|
8 |
|
9 |
+
def predict(img):
|
10 |
+
#inputs = feature_extractor(images=image, return_tensors="pt")
|
11 |
+
pipe = pipeline('image-classification', model=model_name, device=0)
|
12 |
+
pred = pipe(image)
|
13 |
+
return pred
|
14 |
|
15 |
# Create title, description and article strings
|
16 |
title = "Classification Demo"
|
17 |
description = "XRay classification"
|
18 |
|
19 |
# Create the Gradio demo
|
20 |
+
demo = gr.Interface(fn=predict, # mapping function from input to output
|
21 |
inputs=gr.Image(type='filepath'), # what are the inputs?
|
22 |
outputs=[gr.Label(label="Predictions"), # what are the outputs?
|
23 |
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
|