Update app.py
Browse files
app.py
CHANGED
@@ -5,9 +5,7 @@ import torch
|
|
5 |
import numpy as np
|
6 |
|
7 |
# Load the pre-trained model and preprocessor (feature extractor)
|
8 |
-
model_name_pneumonia = "runaksh/chest_xray_pneumonia_detection"
|
9 |
model_name_tuberculosis = "runaksh/chest_xray_tuberculosis_detection"
|
10 |
-
model_pneumonia = ViTForImageClassification.from_pretrained(model_name_pneumonia)
|
11 |
model_tuberculosis = ViTForImageClassification.from_pretrained(model_name_tuberculosis)
|
12 |
feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
13 |
|
@@ -15,31 +13,24 @@ def classify_image(image):
|
|
15 |
# Convert the PIL Image to a format compatible with the feature extractor
|
16 |
image = np.array(image)
|
17 |
# Preprocess the image and prepare it for the model
|
18 |
-
inputs_pneumonia = feature_extractor(images=image, return_tensors="pt")
|
19 |
inputs_tuberculosis = feature_extractor(images=image, return_tensors="pt")
|
20 |
# Make prediction
|
21 |
with torch.no_grad():
|
22 |
-
outputs_pneumonia = model_pneumonia(**inputs_pneumonia)
|
23 |
-
logits_pneumonia = outputs_pneumonia.logits
|
24 |
outputs_tuberculosis = model_tuberculosis(**inputs_tuberculosis)
|
25 |
logits_tuberculosis = outputs_tuberculosis.logits
|
26 |
# Retrieve the highest probability class label index
|
27 |
-
predicted_class_idx_pneumonia = logits_pneumonia.argmax(-1).item()
|
28 |
predicted_class_idx_tuberculosis = logits_tuberculosis.argmax(-1).item()
|
29 |
# Define a manual mapping of label indices to human-readable labels
|
30 |
-
index_to_label_pneumonia = {0: "Pneumonia = NO",1: "Pneumonia = YES"}
|
31 |
index_to_label_tuberculosis = {0: "Tuberculosis = NO",1: "Tuberculosis = YES"}
|
32 |
# Convert the index to the model's class label
|
33 |
-
label_pneumonia = index_to_label_pneumonia.get(predicted_class_idx_pneumonia, "Unknown Label")
|
34 |
label_tuberculosis = index_to_label_tuberculosis.get(predicted_class_idx_tuberculosis, "Unknown Label")
|
35 |
-
label = label_pneumonia+".................."+label_tuberculosis
|
36 |
|
37 |
-
return
|
38 |
|
39 |
|
40 |
# Create title, description and article strings
|
41 |
-
title = "Automated Classification of
|
42 |
-
description = "Upload your lungs Radiograph to find out if you are having
|
43 |
|
44 |
css_code = ".gradio-container {background: url(https://actionmenshealth.com/wp-content/uploads/2018/05/heart.jpg); background-size: cover;}"
|
45 |
|
|
|
5 |
import numpy as np
|
6 |
|
7 |
# Load the pre-trained model and preprocessor (feature extractor)
|
|
|
8 |
model_name_tuberculosis = "runaksh/chest_xray_tuberculosis_detection"
|
|
|
9 |
model_tuberculosis = ViTForImageClassification.from_pretrained(model_name_tuberculosis)
|
10 |
feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
11 |
|
|
|
13 |
# Convert the PIL Image to a format compatible with the feature extractor
|
14 |
image = np.array(image)
|
15 |
# Preprocess the image and prepare it for the model
|
|
|
16 |
inputs_tuberculosis = feature_extractor(images=image, return_tensors="pt")
|
17 |
# Make prediction
|
18 |
with torch.no_grad():
|
|
|
|
|
19 |
outputs_tuberculosis = model_tuberculosis(**inputs_tuberculosis)
|
20 |
logits_tuberculosis = outputs_tuberculosis.logits
|
21 |
# Retrieve the highest probability class label index
|
|
|
22 |
predicted_class_idx_tuberculosis = logits_tuberculosis.argmax(-1).item()
|
23 |
# Define a manual mapping of label indices to human-readable labels
|
|
|
24 |
index_to_label_tuberculosis = {0: "Tuberculosis = NO",1: "Tuberculosis = YES"}
|
25 |
# Convert the index to the model's class label
|
|
|
26 |
label_tuberculosis = index_to_label_tuberculosis.get(predicted_class_idx_tuberculosis, "Unknown Label")
|
|
|
27 |
|
28 |
+
return label_tuberculosis
|
29 |
|
30 |
|
31 |
# Create title, description and article strings
|
32 |
+
title = "Automated Classification of Tuberculosis using Machine Learning"
|
33 |
+
description = "Upload your lungs Radiograph to find out if you are having Tuberculosis"
|
34 |
|
35 |
css_code = ".gradio-container {background: url(https://actionmenshealth.com/wp-content/uploads/2018/05/heart.jpg); background-size: cover;}"
|
36 |
|