Update app.py
Browse files
app.py
CHANGED
@@ -16,24 +16,25 @@ def classify_image(image):
|
|
16 |
image = np.array(image)
|
17 |
# Preprocess the image and prepare it for the model
|
18 |
inputs_pneumonia = feature_extractor(images=image, return_tensors="pt")
|
19 |
-
inputs_tuberculosis = feature_extractor(images=image, return_tensors="pt")
|
20 |
# Make prediction
|
21 |
with torch.no_grad():
|
22 |
outputs_pneumonia = model_pneumonia(**inputs_pneumonia)
|
23 |
logits_pneumonia = outputs_pneumonia.logits
|
24 |
-
outputs_tuberculosis = model_tuberculosis(**inputs_tuberculosis)
|
25 |
-
logits_tuberculosis = outputs_tuberculosis.logits
|
26 |
# Retrieve the highest probability class label index
|
27 |
predicted_class_idx_pneumonia = logits_pneumonia.argmax(-1).item()
|
28 |
-
predicted_class_idx_tuberculosis = logits_tuberculosis.argmax(-1).item()
|
29 |
# Define a manual mapping of label indices to human-readable labels
|
30 |
index_to_label_pneumonia = {0: "NORMAL",1: "PNEUMONIA"}
|
31 |
-
index_to_label_tuberculosis = {0: "NORMAL",1: "TUBERCULOSIS"}
|
32 |
# Convert the index to the model's class label
|
33 |
label_pneumonia = index_to_label_pneumonia.get(predicted_class_idx_pneumonia, "Unknown Label")
|
34 |
-
label_tuberculosis = index_to_label_tuberculosis.get(predicted_class_idx_tuberculosis, "Unknown Label")
|
|
|
35 |
|
36 |
-
return
|
37 |
|
38 |
# Create title, description and article strings
|
39 |
title = "Classification Demo"
|
|
|
16 |
image = np.array(image)
|
17 |
# Preprocess the image and prepare it for the model
|
18 |
inputs_pneumonia = feature_extractor(images=image, return_tensors="pt")
|
19 |
+
####inputs_tuberculosis = feature_extractor(images=image, return_tensors="pt")
|
20 |
# Make prediction
|
21 |
with torch.no_grad():
|
22 |
outputs_pneumonia = model_pneumonia(**inputs_pneumonia)
|
23 |
logits_pneumonia = outputs_pneumonia.logits
|
24 |
+
####outputs_tuberculosis = model_tuberculosis(**inputs_tuberculosis)
|
25 |
+
####logits_tuberculosis = outputs_tuberculosis.logits
|
26 |
# Retrieve the highest probability class label index
|
27 |
predicted_class_idx_pneumonia = logits_pneumonia.argmax(-1).item()
|
28 |
+
####predicted_class_idx_tuberculosis = logits_tuberculosis.argmax(-1).item()
|
29 |
# Define a manual mapping of label indices to human-readable labels
|
30 |
index_to_label_pneumonia = {0: "NORMAL",1: "PNEUMONIA"}
|
31 |
+
####index_to_label_tuberculosis = {0: "NORMAL",1: "TUBERCULOSIS"}
|
32 |
# Convert the index to the model's class label
|
33 |
label_pneumonia = index_to_label_pneumonia.get(predicted_class_idx_pneumonia, "Unknown Label")
|
34 |
+
####label_tuberculosis = index_to_label_tuberculosis.get(predicted_class_idx_tuberculosis, "Unknown Label")
|
35 |
+
label = label_pneumonia
|
36 |
|
37 |
+
return label
|
38 |
|
39 |
# Create title, description and article strings
|
40 |
title = "Classification Demo"
|