Spaces:
Running
Running
Add safety_check
Browse files- backend/safety_check.py +30 -0
- frontend/webui/hf_demo.py +4 -4
backend/safety_check.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import CLIPProcessor, CLIPModel
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
|
5 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
6 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
7 |
+
|
8 |
+
|
9 |
+
def is_safe_image(
|
10 |
+
model,
|
11 |
+
processor,
|
12 |
+
image,
|
13 |
+
):
|
14 |
+
# Load image
|
15 |
+
# image = Image.open(
|
16 |
+
# r"F:\om\2025\fastsdcpumcp\fastsdcpu\results\829a2123-92c8-4957-ad2f-06365a19665a-1.png"
|
17 |
+
# )
|
18 |
+
categories = ["safe", "nsfw"]
|
19 |
+
inputs = processor(
|
20 |
+
text=categories,
|
21 |
+
images=image,
|
22 |
+
return_tensors="pt",
|
23 |
+
padding=True,
|
24 |
+
)
|
25 |
+
outputs = model(**inputs)
|
26 |
+
logits_per_image = outputs.logits_per_image
|
27 |
+
probs = logits_per_image.softmax(dim=1)
|
28 |
+
safe_prob = dict(zip(categories, probs[0].tolist()))
|
29 |
+
print(safe_prob)
|
30 |
+
return safe_prob["safe"] > safe_prob["nsfw"]
|
frontend/webui/hf_demo.py
CHANGED
@@ -42,7 +42,7 @@ def predict(
|
|
42 |
print(f"prompt - {prompt}")
|
43 |
lcm_diffusion_setting = LCMDiffusionSetting()
|
44 |
lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
|
45 |
-
lcm_diffusion_setting.openvino_lcm_model_id = "rupeshs/sd-
|
46 |
lcm_diffusion_setting.use_lcm_lora = False
|
47 |
lcm_diffusion_setting.prompt = prompt
|
48 |
lcm_diffusion_setting.guidance_scale = 1.0
|
@@ -55,15 +55,15 @@ def predict(
|
|
55 |
# lcm_diffusion_setting.image_height = 320 if is_openvino_device() else 512
|
56 |
lcm_diffusion_setting.image_width = 512
|
57 |
lcm_diffusion_setting.image_height = 512
|
58 |
-
lcm_diffusion_setting.use_openvino =
|
59 |
-
lcm_diffusion_setting.use_tiny_auto_encoder =
|
60 |
pprint(lcm_diffusion_setting.model_dump())
|
61 |
lcm_text_to_image.init(lcm_diffusion_setting=lcm_diffusion_setting)
|
62 |
start = perf_counter()
|
63 |
images = lcm_text_to_image.generate(lcm_diffusion_setting)
|
64 |
latency = perf_counter() - start
|
65 |
print(f"Latency: {latency:.2f} seconds")
|
66 |
-
return images[0]
|
67 |
|
68 |
|
69 |
css = """
|
|
|
42 |
print(f"prompt - {prompt}")
|
43 |
lcm_diffusion_setting = LCMDiffusionSetting()
|
44 |
lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
|
45 |
+
lcm_diffusion_setting.openvino_lcm_model_id = "rupeshs/hyper-sd-sdxl-1-step"
|
46 |
lcm_diffusion_setting.use_lcm_lora = False
|
47 |
lcm_diffusion_setting.prompt = prompt
|
48 |
lcm_diffusion_setting.guidance_scale = 1.0
|
|
|
55 |
# lcm_diffusion_setting.image_height = 320 if is_openvino_device() else 512
|
56 |
lcm_diffusion_setting.image_width = 512
|
57 |
lcm_diffusion_setting.image_height = 512
|
58 |
+
lcm_diffusion_setting.use_openvino = False
|
59 |
+
lcm_diffusion_setting.use_tiny_auto_encoder = False
|
60 |
pprint(lcm_diffusion_setting.model_dump())
|
61 |
lcm_text_to_image.init(lcm_diffusion_setting=lcm_diffusion_setting)
|
62 |
start = perf_counter()
|
63 |
images = lcm_text_to_image.generate(lcm_diffusion_setting)
|
64 |
latency = perf_counter() - start
|
65 |
print(f"Latency: {latency:.2f} seconds")
|
66 |
+
return images[0]
|
67 |
|
68 |
|
69 |
css = """
|