Spaces:
Sleeping
Sleeping
Created app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the tokenizer and model from Hugging Face
|
6 |
+
@st.cache_resource
|
7 |
+
def load_model():
|
8 |
+
model_name = "meta-llama/Meta-Llama-3.1-70B-Instruct"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
11 |
+
return tokenizer, model
|
12 |
+
|
13 |
+
tokenizer, model = load_model()
|
14 |
+
|
15 |
+
# Supported languages
|
16 |
+
languages = ['English', 'French', 'Spanish', 'Hindi', 'Punjabi']
|
17 |
+
|
18 |
+
# Streamlit app
|
19 |
+
def main():
|
20 |
+
st.title("Language Translator")
|
21 |
+
|
22 |
+
# User input for input language
|
23 |
+
input_language = st.selectbox("Select Input Language", languages)
|
24 |
+
|
25 |
+
# User input for output language
|
26 |
+
output_language = st.selectbox("Select Output Language", languages)
|
27 |
+
|
28 |
+
# Text input box for user to input text
|
29 |
+
input_text = st.text_area("Enter the text to translate")
|
30 |
+
|
31 |
+
if st.button("Translate"):
|
32 |
+
if input_text.strip() == "":
|
33 |
+
st.error("Please enter some text to translate.")
|
34 |
+
elif input_language == output_language:
|
35 |
+
st.warning("Input and output languages are the same. Please select different languages.")
|
36 |
+
else:
|
37 |
+
# Perform translation
|
38 |
+
translation = translate_text(input_text, input_language, output_language)
|
39 |
+
st.success("Translation:")
|
40 |
+
st.write(translation)
|
41 |
+
|
42 |
+
# Function to translate text using the LLaMA model
|
43 |
+
def translate_text(text, input_language, output_language):
|
44 |
+
prompt = f"Translate the following from {input_language} to {output_language}:\n\n{text}"
|
45 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
46 |
+
with torch.no_grad():
|
47 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
48 |
+
translation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
+
return translation
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
main()
|