Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import pickle
|
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
cosine_scores = pickle.load(open('cosine_scores.pkl','rb'))
|
8 |
coursedf = pd.read_pickle('course_df_new.pkl') # course_df uses titles to generate course recommendations
|
@@ -44,6 +45,8 @@ maincol1, maincol2 = container.columns(2)
|
|
44 |
st.write('')
|
45 |
|
46 |
if maincol1.button('Discover by title',use_container_width=True):
|
|
|
|
|
47 |
output=recommend(np.where((coursedf['ref']+": "+coursedf['title']) == selected_course)[0][0])
|
48 |
for result in output:
|
49 |
index=np.where(coursedf['title'] == result)[0][0]
|
@@ -57,6 +60,8 @@ if maincol1.button('Discover by title',use_container_width=True):
|
|
57 |
st.divider()
|
58 |
|
59 |
if maincol2.button('Discover by description',use_container_width=True):
|
|
|
|
|
60 |
index_new=np.where((coursedf['ref']+": "+coursedf['title']) == selected_course)[0][0]
|
61 |
rec_list=coursedf.iloc[index_new,2]
|
62 |
for result in rec_list[1:]:
|
|
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
+
import requests
|
7 |
|
8 |
cosine_scores = pickle.load(open('cosine_scores.pkl','rb'))
|
9 |
coursedf = pd.read_pickle('course_df_new.pkl') # course_df uses titles to generate course recommendations
|
|
|
45 |
st.write('')
|
46 |
|
47 |
if maincol1.button('Discover by title',use_container_width=True):
|
48 |
+
url='https://datadrop.wolframcloud.com/api/v1.0/Add?bin=1fYEdJizg&data='+selected_course.replace(":","")
|
49 |
+
x=requests.get(url)
|
50 |
output=recommend(np.where((coursedf['ref']+": "+coursedf['title']) == selected_course)[0][0])
|
51 |
for result in output:
|
52 |
index=np.where(coursedf['title'] == result)[0][0]
|
|
|
60 |
st.divider()
|
61 |
|
62 |
if maincol2.button('Discover by description',use_container_width=True):
|
63 |
+
url='https://datadrop.wolframcloud.com/api/v1.0/Add?bin=1fYEdJizg&data='+selected_course.replace(":","")
|
64 |
+
x=requests.get(url)
|
65 |
index_new=np.where((coursedf['ref']+": "+coursedf['title']) == selected_course)[0][0]
|
66 |
rec_list=coursedf.iloc[index_new,2]
|
67 |
for result in rec_list[1:]:
|