File size: 10,774 Bytes
da3cb05
 
 
 
 
ea97af8
da3cb05
6e7206a
ea97af8
 
 
33c7116
6fcd09e
 
 
 
ea97af8
 
 
 
6fcd09e
 
896df36
6fcd09e
 
 
 
ea97af8
 
 
 
 
 
 
 
da3cb05
 
 
 
 
 
 
 
33c7116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea97af8
33c7116
 
 
 
 
 
 
a8c751e
33c7116
 
 
 
ea97af8
 
 
 
 
 
 
50e2080
 
ea97af8
a693879
ea97af8
33c7116
 
 
a8c751e
ea97af8
 
33c7116
ea97af8
 
 
 
33c7116
ea97af8
 
 
a8c751e
 
 
ea97af8
 
a8c751e
ea97af8
 
 
6fcd09e
 
 
 
 
a6549e8
6fcd09e
 
3725d22
6fcd09e
 
 
 
 
 
 
 
f77d6e1
6fcd09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f8c74a
6fcd09e
 
 
 
 
 
 
 
 
3725d22
 
6fcd09e
 
 
 
 
ea97af8
 
da3cb05
a8c751e
ea97af8
33c7116
 
 
 
a693879
a8c751e
33c7116
a8c751e
ea97af8
 
 
 
a8c751e
ea97af8
 
 
 
 
 
 
 
 
 
 
 
 
 
a8c751e
 
 
ea97af8
 
 
 
33c7116
ea97af8
6fcd09e
 
ea97af8
 
 
da3cb05
a8c751e
ea97af8
da3cb05
6e7206a
da3cb05
 
 
 
 
a8c751e
 
da3cb05
a8c751e
da3cb05
 
ea97af8
 
 
 
 
 
 
 
a8c751e
ea97af8
a8c751e
da3cb05
 
 
 
 
 
 
 
a8c751e
da3cb05
 
 
a8c751e
 
 
 
 
 
 
da3cb05
a8c751e
da3cb05
 
 
 
 
 
 
 
 
 
a8c751e
da3cb05
 
a8c751e
da3cb05
 
a8c751e
da3cb05
 
 
 
 
 
 
 
6e7206a
a8c751e
da3cb05
 
 
a8c751e
da3cb05
a8c751e
da3cb05
 
a8c751e
da3cb05
 
 
a8c751e
da3cb05
 
 
 
 
 
a8c751e
da3cb05
a8c751e
da3cb05
 
 
a8c751e
da3cb05
 
a8c751e
da3cb05
a8c751e
da3cb05
a8c751e
da3cb05
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import streamlit as st
import os
import tempfile
from pathlib import Path
import time
from typing import List, Dict, Tuple
import pandas as pd
from streamlit.runtime.uploaded_file_manager import UploadedFile
from anthropic import Anthropic
import pymongo
from dotenv import load_dotenv
import fitz  # PyMuPDF
import voyageai
from pinecone.grpc import PineconeGRPC as Pinecone
from pinecone import ServerlessSpec
from pinecone import Index

# Load environment variables
load_dotenv()

# Initialize VoyageAI constants
VOYAGEAI_BATCH_SIZE = 128
VOYAGEAI_VECTOR_DIM = 512

# Initialize Pinecone
PINECONE_ID = "intratalent-v2"

# Initialize MongoDB client
MONGO_URI = os.getenv('MONGO_URI')
mongo_client = pymongo.MongoClient(MONGO_URI)
db = mongo_client['intratalent']
resume_collection = db['resumes']

# Initialize Anthropic client
anthropic = Anthropic(api_key=os.getenv('ANTHROPIC_API_KEY'))

# Initialize Streamlit app
st.set_page_config(
    page_title="IntraTalent Resume Processor",
    page_icon="πŸ“„",
    layout="wide"
)

def extract_text_from_pdf(pdf_content: bytes) -> str:
    """Extract text from PDF content."""
    try:
        # Create a temporary file to store the PDF content
        with tempfile.NamedTemporaryFile(mode='w+b', suffix='.pdf', delete=False) as temp_file:
            temp_file.write(pdf_content)
            temp_file_path = temp_file.name

        # Extract text from PDF
        doc = fitz.open(temp_file_path)
        text = ""
        for page_num in range(doc.page_count):
            page = doc.load_page(page_num)
            text += page.get_text() + "\n"
        doc.close()

        # Clean up temporary file
        os.unlink(temp_file_path)
        
        return text
    except Exception as e:
        st.error(f"Error extracting text from PDF: {e}")
        return ""

def extract_info_with_claude(resume_text: str) -> str:
    """Extract information from resume text using Claude."""
    st.write("πŸ€– Sending request to Claude API...")
    
    prompt = """
    Extract the following information from the given resume:
    1. Full Name
    2. List of all experiences with their descriptions (copy exactly from resume)
    Please format the output as follows:
    Name: [Full Name]
    Projects:
    1. [Experience/Project Name]: [Experience/Project Description]
    2. [Experience/Project Name]: [Experience/Project Description]
    ...
    Extract all experiences, including projects, leadership, work experience, research, etc. Don't include hyphens and put the entire description on one line.
    
    Here's the resume text:
    {resume_text}
    """.format(resume_text=resume_text)
    
    try:
        message = anthropic.messages.create(
            model="claude-3-haiku-20240307",
            max_tokens=4096,
            system="You are a helpful assistant that extracts information from resumes.",
            messages=[{
                "role": "user",
                "content": prompt
            }]
        )
        extracted_info = message.content[0].text
        st.write("βœ… Received response from Claude:")
        st.code(extracted_info, language="text")
        
    except Exception as e:
        extracted_info = f"An error occurred: {e}"
        st.error(f"❌ API Error: {e}")
    
    return extracted_info

def get_pinecone_index(database_id: str) -> Index:
    # initialize connection to pinecone
    pc = Pinecone(api_key=os.getenv('PINECONE_API_KEY'))
        
    # if the index does not exist, we create it
    if not database_id in pc.list_indexes():
        pc.create_index(
            database_id,
            dimension=VOYAGEAI_VECTOR_DIM,
            spec=ServerlessSpec(
                cloud='aws',
                region='us-east-1'
            ),
            metric='cosine'
        )
    
    # connect to index
    index = pc.Index(database_id)

def add_to_voyage(person_name: str, person_projects: list) -> None:
    embeds = []
    metas = []
    ids = []
    index = get_pinecone_index(PINECONE_ID)
    vo = voyageai.Client(api_key=os.getenv('VOYAGEAI_API_KEY'))
    
    for i in range(len(person_projects)):
        # Get the ith project
        project = person_projects[i]

        # Embed the description
        embed = vo.embed(
            texts=project["description"],
            model='voyage-3-lite',
            truncation=False
        ).embeddings[0]
        embeds.append(embed)

        # Create metadata using person's name + project name
        meta = f"{person_name} {project['name']}"
        metas.append(meta)

        # Give it a unique id
        id = i
        ids.append(i)

    # create list of (id, vector, metadata) tuples to be upserted
    to_upsert = list(zip(ids, embeds, meta))
    
    for i in range(0, len(ids), VOYAGEAI_BATCH_SIZE):
        i_end = min(i+VOYAGEAI_BATCH_SIZE, len(ids))
        index.upsert(vectors=to_upsert[i:i_end])
    
    # let's view the index statistics
    st.write(index.describe_index_stats())

def parse_resume(uploaded_file: UploadedFile) -> Tuple[str, List[Dict]]:
    """Parse a resume file and return name and projects."""
    try:
        st.write(f"πŸ“ Processing resume: {uploaded_file.name}")
        resume_content = uploaded_file.getvalue()
        st.write("πŸ“Š Extracting text from PDF...")
        
        resume_text = extract_text_from_pdf(resume_content)
        st.write("πŸ“„ Extracted text from PDF:")
        st.code(resume_text)
        
        extracted_info = extract_info_with_claude(resume_text)
        st.write("πŸ” Parsing extracted information...")
        
        # Parse the extracted information
        lines = extracted_info.split('\n')
        name = lines[0].split(': ')[1] if len(lines) > 0 and ': ' in lines[0] else "Unknown"
        st.write(f"πŸ‘€ Extracted name: {name}")
        
        projects = []
        project_started = False
        for line in lines:
            if line.strip() == "Projects:":
                project_started = True
                continue
            if project_started and line.strip():
                project_parts = line.split(': ', 1)
                if len(project_parts) == 2:
                    project_name = project_parts[0].split('. ', 1)[-1]  # Remove the number
                    project_description = project_parts[1]
                    projects.append({"name": project_name, "description": project_description})
        
        st.write("πŸ“‹ Extracted projects:")
        st.json(projects)
        
        # Store in MongoDB
        resume_data = {
            "name": name,
            "projects": projects,
            "full_content": resume_text
        }
        add_to_voyage(name, projects)
        st.write("πŸ’Ύ Stored data in VoyageAI")
        
        return name, projects
        
    except Exception as e:
        st.error(f"❌ Error processing resume: {e}")
        return "Unknown", []

def process_resumes(uploaded_files: List[UploadedFile]) -> Dict:
    """Process multiple resumes and return results."""
    results = {}
    progress_bar = st.progress(0)
    
    for idx, file in enumerate(uploaded_files):
        st.write(f"\n---\n### Processing file {idx + 1} of {len(uploaded_files)}")
        
        if file.type != "application/pdf":
            st.warning(f"⚠️ Skipping {file.name}: Not a PDF file")
            continue
            
        try:
            name, projects = parse_resume(file)
            results[file.name] = {
                "name": name,
                "projects": projects
            }
            # Update progress
            progress_bar.progress((idx + 1) / len(uploaded_files))
            st.write(f"βœ… Successfully processed {file.name}")
        except Exception as e:
            st.error(f"❌ Error processing {file.name}: {e}")
                
    return results

def display_results(results: Dict):
    """Display processed resume results in an organized manner."""
    if not results:
        return
        
    st.subheader("πŸ“Š Processed Resumes")
    
    for filename, data in results.items():
        with st.expander(f"πŸ“„ {data['name']} ({filename})"):
            st.write("🏷️ File details:")
            st.json({
                "filename": filename,
                "name": data['name'],
                "number_of_projects": len(data['projects'])
            })
            
            if data['projects']:
                st.write("πŸ“‹ Projects:")
                df = pd.DataFrame(data['projects'])
                st.dataframe(
                    df,
                    column_config={
                        "name": "Project Name",
                        "description": "Description"
                    },
                    hide_index=True
                )
            else:
                st.info("ℹ️ No projects found in this resume")

def main():
    st.title("🎯 IntraTalent Resume Processor")
    
    # File uploader section
    st.header("πŸ“€ Upload Resumes")
    uploaded_files = st.file_uploader(
        "Upload up to 10 resumes (PDF only)",
        type=['pdf'],
        accept_multiple_files=True,
        key="resume_uploader"
    )
    
    # Validate number of files
    if uploaded_files and len(uploaded_files) > 10:
        st.error("⚠️ Maximum 10 files allowed. Please remove some files.")
        return
        
    # Process button
    if uploaded_files and st.button("πŸ”„ Process Resumes"):
        with st.spinner("Processing resumes..."):
            st.write("πŸš€ Starting resume processing...")
            results = process_resumes(uploaded_files)
            st.session_state['processed_results'] = results
            st.write("✨ Processing complete!")
            display_results(results)
    
    # Query section
    st.header("πŸ” Search Projects")
    query = st.text_area(
        "Enter your project requirements",
        placeholder="Example: Looking for team members with experience in machine learning and computer vision...",
        height=100
    )
    
    if query and st.button("πŸ”Ž Search"):
        if 'processed_results' not in st.session_state:
            st.warning("⚠️ Please process some resumes first!")
            return
            
        with st.spinner("Searching for matches..."):
            st.write("πŸ”„ Preparing to search...")
            # Here you would implement the embedding and similarity search
            # Using the code from your original script
            st.success("βœ… Search completed!")
            # Display results in a nice format
            st.subheader("🎯 Top Matches")
            # Placeholder for search results
            st.info("πŸ”œ Feature coming soon: Will display matching projects and candidates based on similarity search")

if __name__ == "__main__":
    main()