import streamlit as st import pickle import pandas as pd import torch import numpy as np from streamlit_card import card cosine_scores = pickle.load(open('cosine_scores.pkl','rb')) coursedf = pd.read_pickle('course_df.pkl') course_title_list = [i + ": " + j for i, j in zip(coursedf['ref'].to_list(), coursedf['title'].to_list())] def get_random_course(): row=coursedf.sample(1) return row['ref'], row['title'] def recommend(index): pairs = {} for i in range(len(coursedf)): pairs[coursedf.iloc[i,1]]=cosine_scores[index][i] sorttemp = sorted(pairs.items(), key=lambda x:x[1], reverse=True) sorted_final = dict(sorttemp[1:31]) return list(sorted_final.keys()) st.set_page_config(page_title='DiscoverCourses', page_icon=':book:') st.title('DiscoverCourses') selected_course = st.selectbox('Please select a course',course_title_list) if st.button('I want more like this!'): output=recommend(np.where((coursedf['ref']+": "+coursedf['title']) == selected_course)[0][0]) for result in output: index=np.where(coursedf['title'] == result)[0][0] course_id=coursedf.iloc[index,0] card( title=course_id, text=result, url="https://explorecourses.stanford.edu/search?q="+course_id+": "+result )