Spaces:
Sleeping
Sleeping
update threshold values
Browse files
app.py
CHANGED
@@ -1,79 +1,79 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import hf_hub_download
|
3 |
-
import yolov9
|
4 |
-
|
5 |
-
|
6 |
-
# Load the model
|
7 |
-
model_path = r'./model/V2_best.pt'
|
8 |
-
model = yolov9.load(model_path)
|
9 |
-
|
10 |
-
def yolov9_inference(img_path, conf_threshold, iou_threshold):
|
11 |
-
"""
|
12 |
-
:param conf_threshold: Confidence threshold for NMS.
|
13 |
-
:param iou_threshold: IoU threshold for NMS.
|
14 |
-
:param img_path: Path to the image file.
|
15 |
-
:param size: Optional, input size for inference.
|
16 |
-
:return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
|
17 |
-
"""
|
18 |
-
global model
|
19 |
-
# Set model parameters
|
20 |
-
model.conf = conf_threshold
|
21 |
-
model.iou = iou_threshold
|
22 |
-
|
23 |
-
# Perform inference
|
24 |
-
results = model(img_path, size=640)
|
25 |
-
|
26 |
-
# Optionally, show detection bounding boxes on image
|
27 |
-
output = results.render()
|
28 |
-
|
29 |
-
return output[0]
|
30 |
-
|
31 |
-
|
32 |
-
def app():
|
33 |
-
with gr.Blocks():
|
34 |
-
with gr.Row():
|
35 |
-
with gr.Column():
|
36 |
-
img_path = gr.Image(type="filepath", label="Image")
|
37 |
-
conf_threshold = gr.Slider(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
)
|
44 |
-
iou_threshold = gr.Slider(
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
)
|
51 |
-
yolov9_infer = gr.Button(value="Prediction")
|
52 |
-
|
53 |
-
with gr.Column():
|
54 |
-
output_numpy = gr.Image(type="numpy",label="Output")
|
55 |
-
|
56 |
-
yolov9_infer.click(
|
57 |
-
fn=yolov9_inference,
|
58 |
-
inputs=[
|
59 |
-
img_path,
|
60 |
-
conf_threshold,
|
61 |
-
iou_threshold,
|
62 |
-
],
|
63 |
-
outputs=[output_numpy],
|
64 |
-
)
|
65 |
-
|
66 |
-
|
67 |
-
gradio_app = gr.Blocks()
|
68 |
-
with gradio_app:
|
69 |
-
gr.HTML(
|
70 |
-
"""
|
71 |
-
<h1 style='text-align: center'>
|
72 |
-
Traffic Signs Detection - Case Study
|
73 |
-
</h1>
|
74 |
-
""")
|
75 |
-
with gr.Row():
|
76 |
-
with gr.Column():
|
77 |
-
app()
|
78 |
-
|
79 |
gradio_app.launch(debug=True)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
import yolov9
|
4 |
+
|
5 |
+
|
6 |
+
# Load the model
|
7 |
+
model_path = r'./model/V2_best.pt'
|
8 |
+
model = yolov9.load(model_path)
|
9 |
+
|
10 |
+
def yolov9_inference(img_path, conf_threshold=0.4, iou_threshold=0.5):
|
11 |
+
"""
|
12 |
+
:param conf_threshold: Confidence threshold for NMS.
|
13 |
+
:param iou_threshold: IoU threshold for NMS.
|
14 |
+
:param img_path: Path to the image file.
|
15 |
+
:param size: Optional, input size for inference.
|
16 |
+
:return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
|
17 |
+
"""
|
18 |
+
global model
|
19 |
+
# Set model parameters
|
20 |
+
model.conf = conf_threshold
|
21 |
+
model.iou = iou_threshold
|
22 |
+
|
23 |
+
# Perform inference
|
24 |
+
results = model(img_path, size=640)
|
25 |
+
|
26 |
+
# Optionally, show detection bounding boxes on image
|
27 |
+
output = results.render()
|
28 |
+
|
29 |
+
return output[0]
|
30 |
+
|
31 |
+
|
32 |
+
def app():
|
33 |
+
with gr.Blocks():
|
34 |
+
with gr.Row():
|
35 |
+
with gr.Column():
|
36 |
+
img_path = gr.Image(type="filepath", label="Image")
|
37 |
+
# conf_threshold = gr.Slider(
|
38 |
+
# label="Confidence Threshold",
|
39 |
+
# minimum=0.1,
|
40 |
+
# maximum=1.0,
|
41 |
+
# step=0.1,
|
42 |
+
# value=0.4,
|
43 |
+
# )
|
44 |
+
# iou_threshold = gr.Slider(
|
45 |
+
# label="IoU Threshold",
|
46 |
+
# minimum=0.1,
|
47 |
+
# maximum=1.0,
|
48 |
+
# step=0.1,
|
49 |
+
# value=0.5,
|
50 |
+
# )
|
51 |
+
yolov9_infer = gr.Button(value="Prediction")
|
52 |
+
|
53 |
+
with gr.Column():
|
54 |
+
output_numpy = gr.Image(type="numpy",label="Output")
|
55 |
+
|
56 |
+
yolov9_infer.click(
|
57 |
+
fn=yolov9_inference,
|
58 |
+
inputs=[
|
59 |
+
img_path,
|
60 |
+
conf_threshold,
|
61 |
+
iou_threshold,
|
62 |
+
],
|
63 |
+
outputs=[output_numpy],
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
gradio_app = gr.Blocks()
|
68 |
+
with gradio_app:
|
69 |
+
gr.HTML(
|
70 |
+
"""
|
71 |
+
<h1 style='text-align: center'>
|
72 |
+
Traffic Signs Detection - Case Study
|
73 |
+
</h1>
|
74 |
+
""")
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column():
|
77 |
+
app()
|
78 |
+
|
79 |
gradio_app.launch(debug=True)
|