ruslanmv commited on
Commit
08b1d69
·
1 Parent(s): 2ff2eb5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -101
app.py CHANGED
@@ -1,110 +1,27 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- # Initialize the inference client
5
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
6
 
7
- # Define the response function
8
- def respond(message, history, system_message, max_tokens, temperature, top_p):
9
- messages = [{"role": "system", "content": system_message}]
10
-
11
- for val in history:
12
- if val[0]:
13
- messages.append({"role": "user", "content": val[0]})
14
- if val[1]:
15
- messages.append({"role": "assistant", "content": val[1]})
16
-
17
- messages.append({"role": "user", "content": message})
18
-
19
- response = ""
20
-
21
- for message in client.chat_completion(
22
- messages,
23
- max_tokens=max_tokens,
24
- stream=True,
25
- temperature=temperature,
26
- top_p=top_p,
27
- ):
28
- token = message.choices[0].delta.content
29
- response += token
30
- yield response
31
-
32
- # Define the Gradio interface
33
- demo = gr.Blocks()
34
-
35
- with demo:
36
- # Load and display the HTML file
37
  with open("index.html", "r") as file:
38
- html_content = file.read()
39
-
40
- gr.HTML(html_content)
41
-
42
- # Create the chat interface
43
- gr.ChatInterface(
44
- respond,
45
- additional_inputs=[
46
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
47
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
48
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
49
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
50
- ],
51
- )
52
-
53
- # Launch the application
54
- if __name__ == "__main__":
55
- demo.launch()
56
- import gradio as gr
57
- from huggingface_hub import InferenceClient
58
-
59
- # Initialize the inference client
60
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
61
-
62
- # Define the response function
63
- def respond(message, history, system_message, max_tokens, temperature, top_p):
64
- messages = [{"role": "system", "content": system_message}]
65
-
66
- for val in history:
67
- if val[0]:
68
- messages.append({"role": "user", "content": val[0]})
69
- if val[1]:
70
- messages.append({"role": "assistant", "content": val[1]})
71
 
72
- messages.append({"role": "user", "content": message})
73
-
74
- response = ""
75
-
76
- for message in client.chat_completion(
77
- messages,
78
- max_tokens=max_tokens,
79
- stream=True,
80
- temperature=temperature,
81
- top_p=top_p,
82
- ):
83
- token = message.choices[0].delta.content
84
- response += token
85
- yield response
86
 
87
- # Define the Gradio interface
88
- demo = gr.Blocks()
 
 
 
 
 
 
89
 
90
- with demo:
91
- # Load and display the HTML file
92
- with open("index.html", "r") as file:
93
- html_content = file.read()
94
-
95
- gr.HTML(html_content)
96
-
97
- # Create the chat interface
98
- gr.ChatInterface(
99
- respond,
100
- additional_inputs=[
101
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
102
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
103
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
104
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
105
- ],
106
- )
107
 
108
- # Launch the application
109
  if __name__ == "__main__":
110
- demo.launch()
 
1
  import gradio as gr
 
2
 
3
+ def show_exam_html():
4
+ with open("exam.html", "r") as file:
5
+ return file.read()
6
 
7
+ def show_index_html():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  with open("index.html", "r") as file:
9
+ return file.read()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ def main():
12
+ with gr.Blocks() as demo:
13
+ gr.HTML(show_index_html())
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ # A hidden HTML component to store and display exam.html content
16
+ exam_html = gr.HTML(show_exam_html(), visible=False)
17
+
18
+ def start_exam():
19
+ return gr.update(visible=True), gr.update(visible=False)
20
+
21
+ # Simulate the navigation event
22
+ gr.Button("Start Exam").click(start_exam, inputs=[], outputs=[exam_html, gr.HTML(show_index_html())])
23
 
24
+ demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
 
26
  if __name__ == "__main__":
27
+ main()