Spaces:
Runtime error
Runtime error
File size: 14,426 Bytes
819f1a5 eb527fd 819f1a5 05856e5 819f1a5 05856e5 819f1a5 08d5f37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import gradio as gr
import os
from utils.default_models import ensure_default_models
import sys
import traceback
from pathlib import Path
from time import perf_counter as timer
import numpy as np
import torch
from encoder import inference as encoder
from synthesizer.inference import Synthesizer
#from toolbox.utterance import Utterance
from vocoder import inference as vocoder
import time
import librosa
import numpy as np
#import sounddevice as sd
import soundfile as sf
import argparse
from utils.argutils import print_args
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("-e", "--enc_model_fpath", type=Path,
default="saved_models/default/encoder.pt",
help="Path to a saved encoder")
parser.add_argument("-s", "--syn_model_fpath", type=Path,
default="saved_models/default/synthesizer.pt",
help="Path to a saved synthesizer")
parser.add_argument("-v", "--voc_model_fpath", type=Path,
default="saved_models/default/vocoder.pt",
help="Path to a saved vocoder")
parser.add_argument("--cpu", action="store_true", help=\
"If True, processing is done on CPU, even when a GPU is available.")
parser.add_argument("--no_sound", action="store_true", help=\
"If True, audio won't be played.")
parser.add_argument("--seed", type=int, default=None, help=\
"Optional random number seed value to make toolbox deterministic.")
args = parser.parse_args()
arg_dict = vars(args)
print_args(args, parser)
# Maximum of generated wavs to keep on memory
MAX_WAVS = 15
utterances = set()
current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav
synthesizer = None # type: Synthesizer
current_wav = None
waves_list = []
waves_count = 0
waves_namelist = []
# Hide GPUs from Pytorch to force CPU processing
if arg_dict.pop("cpu"):
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
print("Running a test of your configuration...\n")
if torch.cuda.is_available():
device_id = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device_id)
## Print some environment information (for debugging purposes)
print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with "
"%.1fGb total memory.\n" %
(torch.cuda.device_count(),
device_id,
gpu_properties.name,
gpu_properties.major,
gpu_properties.minor,
gpu_properties.total_memory / 1e9))
else:
print("Using CPU for inference.\n")
## Load the models one by one.
print("Preparing the encoder, the synthesizer and the vocoder...")
ensure_default_models(Path("saved_models"))
#encoder.load_model(args.enc_model_fpath)
#synthesizer = Synthesizer(args.syn_model_fpath)
#vocoder.load_model(args.voc_model_fpath)
def compute_embedding(in_fpath):
if not encoder.is_loaded():
model_fpath = args.enc_model_fpath
print("Loading the encoder %s... " % model_fpath)
start = time.time()
encoder.load_model(model_fpath)
print("Done (%dms)." % int(1000 * (time.time() - start)), "append")
## Computing the embedding
# First, we load the wav using the function that the speaker encoder provides. This is
# Get the wav from the disk. We take the wav with the vocoder/synthesizer format for
# playback, so as to have a fair comparison with the generated audio
print("Step 1- load_preprocess_wav",in_fpath)
wav = Synthesizer.load_preprocess_wav(in_fpath)
# important: there is preprocessing that must be applied.
# The following two methods are equivalent:
# - Directly load from the filepath:
print("Step 2- preprocess_wav")
preprocessed_wav = encoder.preprocess_wav(wav)
# - If the wav is already loaded:
#original_wav, sampling_rate = librosa.load(str(in_fpath))
#preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate)
# Compute the embedding
print("Step 3- embed_utterance")
embed, partial_embeds, _ = encoder.embed_utterance(preprocessed_wav, return_partials=True)
print("Loaded file succesfully")
# Then we derive the embedding. There are many functions and parameters that the
# speaker encoder interfaces. These are mostly for in-depth research. You will typically
# only use this function (with its default parameters):
#embed = encoder.embed_utterance(preprocessed_wav)
return embed
def create_spectrogram(text,embed):
# If seed is specified, reset torch seed and force synthesizer reload
if args.seed is not None:
torch.manual_seed(args.seed)
synthesizer = Synthesizer(args.syn_model_fpath)
# Synthesize the spectrogram
model_fpath = args.syn_model_fpath
print("Loading the synthesizer %s... " % model_fpath)
start = time.time()
synthesizer = Synthesizer(model_fpath)
print("Done (%dms)." % int(1000 * (time.time()- start)), "append")
# The synthesizer works in batch, so you need to put your data in a list or numpy array
texts = [text]
embeds = [embed]
# If you know what the attention layer alignments are, you can retrieve them here by
# passing return_alignments=True
specs = synthesizer.synthesize_spectrograms(texts, embeds)
breaks = [spec.shape[1] for spec in specs]
spec = np.concatenate(specs, axis=1)
sample_rate=synthesizer.sample_rate
return spec, breaks , sample_rate
def generate_waveform(current_generated):
speaker_name, spec, breaks = current_generated
assert spec is not None
## Generating the waveform
print("Synthesizing the waveform:")
# If seed is specified, reset torch seed and reload vocoder
if args.seed is not None:
torch.manual_seed(args.seed)
vocoder.load_model(args.voc_model_fpath)
model_fpath = args.voc_model_fpath
# Synthesize the waveform
if not vocoder.is_loaded():
print("Loading the vocoder %s... " % model_fpath)
start = time.time()
vocoder.load_model(model_fpath)
print("Done (%dms)." % int(1000 * (time.time()- start)), "append")
current_vocoder_fpath= model_fpath
def vocoder_progress(i, seq_len, b_size, gen_rate):
real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000
line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \
% (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor)
print(line, "overwrite")
# Synthesizing the waveform is fairly straightforward. Remember that the longer the
# spectrogram, the more time-efficient the vocoder.
if current_vocoder_fpath is not None:
print("")
generated_wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress)
else:
print("Waveform generation with Griffin-Lim... ")
generated_wav = Synthesizer.griffin_lim(spec)
print(" Done!", "append")
## Post-generation
# There's a bug with sounddevice that makes the audio cut one second earlier, so we
# pad it.
generated_wav = np.pad(generated_wav, (0, Synthesizer.sample_rate), mode="constant")
# Add breaks
b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size)
b_starts = np.concatenate(([0], b_ends[:-1]))
wavs = [generated_wav[start:end] for start, end, in zip(b_starts, b_ends)]
breaks = [np.zeros(int(0.15 * Synthesizer.sample_rate))] * len(breaks)
generated_wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)])
# Trim excess silences to compensate for gaps in spectrograms (issue #53)
generated_wav = encoder.preprocess_wav(generated_wav)
return generated_wav
def save_on_disk(generated_wav,sample_rate):
# Save it on the disk
filename = "cloned_voice.wav"
print(generated_wav.dtype)
#OUT=os.environ['OUT_PATH']
# Returns `None` if key doesn't exist
#OUT=os.environ.get('OUT_PATH')
#result = os.path.join(OUT, filename)
result = filename
print(" > Saving output to {}".format(result))
sf.write(result, generated_wav.astype(np.float32), sample_rate)
print("\nSaved output as %s\n\n" % result)
return result
def play_audio(generated_wav,sample_rate):
# Play the audio (non-blocking)
if not args.no_sound:
try:
sd.stop()
sd.play(generated_wav, sample_rate)
except sd.PortAudioError as e:
print("\nCaught exception: %s" % repr(e))
print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n")
except:
raise
def clean_memory():
import gc
#import GPUtil
# To see memory usage
print('Before clean ')
#GPUtil.showUtilization()
#cleaning memory 1
gc.collect()
torch.cuda.empty_cache()
time.sleep(2)
print('After Clean GPU')
#GPUtil.showUtilization()
def clone_voice(in_fpath, text):
try:
speaker_name = "output"
# Compute embedding
embed=compute_embedding(in_fpath)
print("Created the embedding")
# Generating the spectrogram
spec, breaks, sample_rate = create_spectrogram(text,embed)
current_generated = (speaker_name, spec, breaks)
print("Created the mel spectrogram")
# Create waveform
generated_wav=generate_waveform(current_generated)
print("Created the the waveform ")
# Save it on the disk
save_on_disk(generated_wav,sample_rate)
#Play the audio
#play_audio(generated_wav,sample_rate)
return
except Exception as e:
print("Caught exception: %s" % repr(e))
print("Restarting\n")
# Set environment variables
home_dir = os.getcwd()
OUT_PATH=os.path.join(home_dir, "out/")
os.environ['OUT_PATH'] = OUT_PATH
# create output path
os.makedirs(OUT_PATH, exist_ok=True)
USE_CUDA = torch.cuda.is_available()
os.system('pip install -q pydub ffmpeg-normalize')
CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
def greet(Text,Voicetoclone ,input_mic=None):
text= "%s" % (Text)
#reference_files= "%s" % (Voicetoclone)
clean_memory()
print(text,len(text),type(text))
print(Voicetoclone,type(Voicetoclone))
if len(text) == 0 :
print("Please add text to the program")
Text="Please add text to the program, thank you."
is_no_text=True
else:
is_no_text=False
if Voicetoclone==None and input_mic==None:
print("There is no input audio")
Text="Please add audio input, to the program, thank you."
Voicetoclone='trump.mp3'
if is_no_text:
Text="Please add text and audio, to the program, thank you."
if input_mic != "" and input_mic != None :
# Get the wav file from the microphone
print('The value of MIC IS :',input_mic,type(input_mic))
Voicetoclone= input_mic
text= "%s" % (Text)
reference_files= Voicetoclone
print("path url")
print(Voicetoclone)
sample= str(Voicetoclone)
os.environ['sample'] = sample
size= len(reference_files)*sys.getsizeof(reference_files)
size2= size / 1000000
if (size2 > 0.012) or len(text)>2000:
message="File is greater than 30mb or Text inserted is longer than 2000 characters. Please re-try with smaller sizes."
print(message)
raise SystemExit("File is greater than 30mb. Please re-try or Text inserted is longer than 2000 characters. Please re-try with smaller sizes.")
else:
env_var = 'sample'
if env_var in os.environ:
print(f'{env_var} value is {os.environ[env_var]}')
else:
print(f'{env_var} does not exist')
#os.system(f'ffmpeg-normalize {os.environ[env_var]} -nt rms -t=-27 -o {os.environ[env_var]} -ar 16000 -f')
in_fpath = Path(Voicetoclone)
#in_fpath= in_fpath.replace("\"", "").replace("\'", "")
out_path=clone_voice(in_fpath, text)
print(" > text: {}".format(text))
print("Generated Audio")
return "cloned_voice.wav"
demo = gr.Interface(
fn=greet,
inputs=[gr.inputs.Textbox(label='What would you like the voice to say? (max. 2000 characters per request)'),
gr.Audio(
type="filepath",
source="upload",
label='Please upload a voice to clone (max. 30mb)'),
gr.inputs.Audio(
source="microphone",
label='or record',
type="filepath",
optional=True)
],
outputs="audio",
title = 'Clone Your Voice',
description = 'A simple application that Clone Your Voice. Wait one minute to process.',
article =
'''<div>
<p style="text-align: center"> All you need to do is record your voice, type what you want be say
,then wait for compiling. After that click on Play/Pause for listen the audio. The audio is saved in an wav format.
For more information visit <a href="https://ruslanmv.com/">ruslanmv.com</a>
</p>
</div>''',
#examples = [["I am the cloned version of Donald Trump. Well. I think what's happening to this country is unbelievably bad. We're no longer a respected country","trump.mp3","trump.mp3"],
# ["I am the cloned version of Elon Musk. Persistence is very important. You should not give up unless you are forced to give up.","musk.mp3","musk.mp3"] ,
# ["I am the cloned version of Elizabeth. It has always been easy to hate and destroy. To build and to cherish is much more difficult." ,"queen.mp3","queen.mp3"]
# ]
)
demo.launch() |