File size: 14,426 Bytes
819f1a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb527fd
819f1a5
 
 
 
 
 
05856e5
819f1a5
 
 
 
 
 
 
05856e5
819f1a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d5f37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import gradio as gr
import os
from utils.default_models import ensure_default_models
import sys
import traceback
from pathlib import Path
from time import perf_counter as timer
import numpy as np
import torch
from encoder import inference as encoder
from synthesizer.inference import Synthesizer
#from toolbox.utterance import Utterance
from vocoder import inference as vocoder
import time
import librosa
import numpy as np
#import sounddevice as sd
import soundfile as sf
import argparse
from utils.argutils import print_args

parser = argparse.ArgumentParser(
    formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("-e", "--enc_model_fpath", type=Path,
                    default="saved_models/default/encoder.pt",
                    help="Path to a saved encoder")
parser.add_argument("-s", "--syn_model_fpath", type=Path,
                    default="saved_models/default/synthesizer.pt",
                    help="Path to a saved synthesizer")
parser.add_argument("-v", "--voc_model_fpath", type=Path,
                    default="saved_models/default/vocoder.pt",
                    help="Path to a saved vocoder")
parser.add_argument("--cpu", action="store_true", help=\
    "If True, processing is done on CPU, even when a GPU is available.")
parser.add_argument("--no_sound", action="store_true", help=\
    "If True, audio won't be played.")
parser.add_argument("--seed", type=int, default=None, help=\
    "Optional random number seed value to make toolbox deterministic.")
args = parser.parse_args()
arg_dict = vars(args)
print_args(args, parser)

# Maximum of generated wavs to keep on memory
MAX_WAVS = 15
utterances = set()
current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav
synthesizer = None # type: Synthesizer
current_wav = None
waves_list = []
waves_count = 0
waves_namelist = []

# Hide GPUs from Pytorch to force CPU processing
if arg_dict.pop("cpu"):
    os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

print("Running a test of your configuration...\n")

if torch.cuda.is_available():
    device_id = torch.cuda.current_device()
    gpu_properties = torch.cuda.get_device_properties(device_id)
    ## Print some environment information (for debugging purposes)
    print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with "
        "%.1fGb total memory.\n" %
        (torch.cuda.device_count(),
        device_id,
        gpu_properties.name,
        gpu_properties.major,
        gpu_properties.minor,
        gpu_properties.total_memory / 1e9))
else:
    print("Using CPU for inference.\n")

## Load the models one by one.
print("Preparing the encoder, the synthesizer and the vocoder...")
ensure_default_models(Path("saved_models"))
#encoder.load_model(args.enc_model_fpath)
#synthesizer = Synthesizer(args.syn_model_fpath)
#vocoder.load_model(args.voc_model_fpath)

def compute_embedding(in_fpath):

    if not encoder.is_loaded():
        model_fpath = args.enc_model_fpath
        print("Loading the encoder %s... " % model_fpath)
        start = time.time() 
        encoder.load_model(model_fpath)
        print("Done (%dms)." % int(1000 * (time.time() - start)), "append")


    ## Computing the embedding
    # First, we load the wav using the function that the speaker encoder provides. This is
    
    # Get the wav from the disk. We take the wav with the vocoder/synthesizer format for
    # playback, so as to have a fair comparison with the generated audio
    print("Step 1- load_preprocess_wav",in_fpath)
    wav = Synthesizer.load_preprocess_wav(in_fpath)
    
    # important: there is preprocessing that must be applied.

    # The following two methods are equivalent:
    # - Directly load from the filepath:
    print("Step 2- preprocess_wav")
    preprocessed_wav = encoder.preprocess_wav(wav)

    # - If the wav is already loaded:
    #original_wav, sampling_rate = librosa.load(str(in_fpath))
    #preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate)

    # Compute the embedding
    print("Step 3- embed_utterance")
    embed, partial_embeds, _ = encoder.embed_utterance(preprocessed_wav, return_partials=True)


    print("Loaded file succesfully")

    # Then we derive the embedding. There are many functions and parameters that the
    # speaker encoder interfaces. These are mostly for in-depth research. You will typically
    # only use this function (with its default parameters):
    #embed = encoder.embed_utterance(preprocessed_wav)
    
    return embed 
def create_spectrogram(text,embed):
        # If seed is specified, reset torch seed and force synthesizer reload
        if args.seed is not None:
            torch.manual_seed(args.seed)
            synthesizer = Synthesizer(args.syn_model_fpath)
        
        
        # Synthesize the spectrogram
        model_fpath = args.syn_model_fpath
        print("Loading the synthesizer %s... " % model_fpath)
        start = time.time()
        synthesizer = Synthesizer(model_fpath)
        print("Done (%dms)." % int(1000 * (time.time()- start)), "append")          
        

        # The synthesizer works in batch, so you need to put your data in a list or numpy array
        texts = [text]
        embeds = [embed]
        # If you know what the attention layer alignments are, you can retrieve them here by
        # passing return_alignments=True
        specs = synthesizer.synthesize_spectrograms(texts, embeds)
        breaks = [spec.shape[1] for spec in specs]
        spec = np.concatenate(specs, axis=1)
        sample_rate=synthesizer.sample_rate
        return spec, breaks , sample_rate


def generate_waveform(current_generated):

        speaker_name, spec, breaks = current_generated
        assert spec is not None

        ## Generating the waveform
        print("Synthesizing the waveform:")
        # If seed is specified, reset torch seed and reload vocoder
        if args.seed is not None:
            torch.manual_seed(args.seed)
            vocoder.load_model(args.voc_model_fpath)

        model_fpath = args.voc_model_fpath
        # Synthesize the waveform
        if not vocoder.is_loaded():
            print("Loading the vocoder %s... " % model_fpath)
            start = time.time()
            vocoder.load_model(model_fpath)
            print("Done (%dms)." % int(1000 * (time.time()- start)), "append")    

        current_vocoder_fpath= model_fpath
        def vocoder_progress(i, seq_len, b_size, gen_rate):
            real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000
            line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \
                % (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor)
            print(line, "overwrite")       


        # Synthesizing the waveform is fairly straightforward. Remember that the longer the
        # spectrogram, the more time-efficient the vocoder.
        if  current_vocoder_fpath is not None:
            print("")
            generated_wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress)
        else:
            print("Waveform generation with Griffin-Lim... ")
            generated_wav = Synthesizer.griffin_lim(spec)

        print(" Done!", "append")


        ## Post-generation
        # There's a bug with sounddevice that makes the audio cut one second earlier, so we
        # pad it.
        generated_wav = np.pad(generated_wav, (0, Synthesizer.sample_rate), mode="constant")

        # Add breaks
        b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size)
        b_starts = np.concatenate(([0], b_ends[:-1]))
        wavs = [generated_wav[start:end] for start, end, in zip(b_starts, b_ends)]
        breaks = [np.zeros(int(0.15 * Synthesizer.sample_rate))] * len(breaks)
        generated_wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)])


        # Trim excess silences to compensate for gaps in spectrograms (issue #53)
        generated_wav = encoder.preprocess_wav(generated_wav)


        return generated_wav


def save_on_disk(generated_wav,sample_rate):
        # Save it on the disk
        filename = "cloned_voice.wav"
        print(generated_wav.dtype)
        #OUT=os.environ['OUT_PATH']
        # Returns `None` if key doesn't exist
        #OUT=os.environ.get('OUT_PATH')
        #result = os.path.join(OUT, filename)
        result = filename
        print(" > Saving output to {}".format(result))
        sf.write(result, generated_wav.astype(np.float32), sample_rate)
        print("\nSaved output as %s\n\n" % result) 
      
        return  result     
def play_audio(generated_wav,sample_rate):
        # Play the audio (non-blocking)
        if not args.no_sound:
          
            try:
                sd.stop()
                sd.play(generated_wav, sample_rate)
            except sd.PortAudioError as e:
                print("\nCaught exception: %s" % repr(e))
                print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n")
            except:
                raise
         

def clean_memory():
    import gc
    #import GPUtil
    # To see memory usage
    print('Before clean ')
    #GPUtil.showUtilization()
    #cleaning memory 1
    gc.collect()
    torch.cuda.empty_cache()
    time.sleep(2)
    print('After Clean GPU')
    #GPUtil.showUtilization()

def clone_voice(in_fpath, text):
    try:       
            speaker_name = "output"
            # Compute embedding
            embed=compute_embedding(in_fpath)
            print("Created the embedding")
            # Generating the spectrogram
            spec, breaks, sample_rate = create_spectrogram(text,embed)
            current_generated = (speaker_name, spec, breaks)
            print("Created the mel spectrogram")

            # Create waveform
            generated_wav=generate_waveform(current_generated)
            print("Created the the waveform ")

            # Save it on the disk
            save_on_disk(generated_wav,sample_rate)

            #Play the audio 
            #play_audio(generated_wav,sample_rate)

            return        
    except Exception as e:
        print("Caught exception: %s" % repr(e))
        print("Restarting\n")

# Set environment variables
home_dir = os.getcwd()
OUT_PATH=os.path.join(home_dir, "out/")
os.environ['OUT_PATH'] = OUT_PATH

# create output path
os.makedirs(OUT_PATH, exist_ok=True)

USE_CUDA = torch.cuda.is_available()  

os.system('pip install -q pydub ffmpeg-normalize')
CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
def greet(Text,Voicetoclone ,input_mic=None):
    text= "%s" % (Text)
    #reference_files= "%s" % (Voicetoclone)

    clean_memory()
    print(text,len(text),type(text))
    print(Voicetoclone,type(Voicetoclone))

    if  len(text) == 0 : 
        print("Please add text to the program")
        Text="Please add text to the program, thank you."
        is_no_text=True
    else:
        is_no_text=False

    
    if Voicetoclone==None and input_mic==None:
        print("There is no input audio")
        Text="Please add audio input, to the program, thank you."
        Voicetoclone='trump.mp3'
        if  is_no_text:
            Text="Please add text and audio, to the program, thank you."

    if  input_mic != "" and input_mic != None :
        # Get the wav file from the microphone
        print('The value of MIC IS :',input_mic,type(input_mic))
        Voicetoclone= input_mic

    text= "%s" % (Text)
    reference_files= Voicetoclone
    print("path url")
    print(Voicetoclone)
    sample= str(Voicetoclone)
    os.environ['sample'] = sample
    size= len(reference_files)*sys.getsizeof(reference_files)
    size2= size / 1000000
    if (size2 > 0.012) or len(text)>2000:
      message="File is greater than 30mb or Text inserted is longer than 2000 characters. Please re-try with smaller sizes."
      print(message)
      raise SystemExit("File is greater than 30mb. Please re-try or Text inserted is longer than 2000 characters. Please re-try with smaller sizes.")
    else:

      env_var = 'sample'
      if env_var in os.environ:
            print(f'{env_var} value is {os.environ[env_var]}')
      else:
            print(f'{env_var} does not exist')
      #os.system(f'ffmpeg-normalize {os.environ[env_var]} -nt rms -t=-27 -o {os.environ[env_var]} -ar 16000 -f')
      in_fpath = Path(Voicetoclone)
      #in_fpath= in_fpath.replace("\"", "").replace("\'", "")
      
      out_path=clone_voice(in_fpath, text)

      print(" > text: {}".format(text))

      print("Generated Audio")
      return "cloned_voice.wav"

demo = gr.Interface(
    fn=greet, 
    inputs=[gr.inputs.Textbox(label='What would you like the voice to say? (max. 2000 characters per request)'),
            gr.Audio(
            type="filepath",         
            source="upload",
            label='Please upload a voice to clone (max. 30mb)'),
            gr.inputs.Audio(
            source="microphone", 
            label='or record',
            type="filepath", 
            optional=True)
            ],
    outputs="audio",

    title = 'Clone Your Voice',
            description = 'A simple application that Clone Your Voice.  Wait one minute to process.',
            article = 
                        '''<div>
                            <p style="text-align: center"> All you need to do is record your voice, type what you want be say
                            ,then wait for compiling. After that click on Play/Pause for listen the audio. The audio is saved in an wav format.
                            For more information visit <a href="https://ruslanmv.com/">ruslanmv.com</a>
                            </p>
                        </div>''',

           #examples = [["I am the cloned version of Donald Trump. Well. I think what's happening to this country is unbelievably bad. We're no longer a respected country","trump.mp3","trump.mp3"],
           #             ["I am the cloned version of Elon Musk. Persistence is very important. You should not give up unless you are forced to give up.","musk.mp3","musk.mp3"] ,
           #             ["I am the cloned version of Elizabeth. It has always been easy to hate and destroy. To build and to cherish is much more difficult." ,"queen.mp3","queen.mp3"]                    
           #           ]      
    
    )
demo.launch()