Spaces:
Running
Running
File size: 6,781 Bytes
48f2c44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import torch
from synthesizer import audio
from synthesizer.hparams import hparams
from synthesizer.models.tacotron import Tacotron
from synthesizer.utils.symbols import symbols
from synthesizer.utils.text import text_to_sequence
from vocoder.display import simple_table
from pathlib import Path
from typing import Union, List
import numpy as np
import librosa
class Synthesizer:
sample_rate = hparams.sample_rate
hparams = hparams
def __init__(self, model_fpath: Path, verbose=True):
"""
The model isn't instantiated and loaded in memory until needed or until load() is called.
:param model_fpath: path to the trained model file
:param verbose: if False, prints less information when using the model
"""
self.model_fpath = model_fpath
self.verbose = verbose
# Check for GPU
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
self.device = torch.device("cpu")
if self.verbose:
print("Synthesizer using device:", self.device)
# Tacotron model will be instantiated later on first use.
self._model = None
def is_loaded(self):
"""
Whether the model is loaded in memory.
"""
return self._model is not None
def load(self):
"""
Instantiates and loads the model given the weights file that was passed in the constructor.
"""
self._model = Tacotron(embed_dims=hparams.tts_embed_dims,
num_chars=len(symbols),
encoder_dims=hparams.tts_encoder_dims,
decoder_dims=hparams.tts_decoder_dims,
n_mels=hparams.num_mels,
fft_bins=hparams.num_mels,
postnet_dims=hparams.tts_postnet_dims,
encoder_K=hparams.tts_encoder_K,
lstm_dims=hparams.tts_lstm_dims,
postnet_K=hparams.tts_postnet_K,
num_highways=hparams.tts_num_highways,
dropout=hparams.tts_dropout,
stop_threshold=hparams.tts_stop_threshold,
speaker_embedding_size=hparams.speaker_embedding_size).to(self.device)
self._model.load(self.model_fpath)
self._model.eval()
if self.verbose:
print("Loaded synthesizer \"%s\" trained to step %d" % (self.model_fpath.name, self._model.state_dict()["step"]))
def synthesize_spectrograms(self, texts: List[str],
embeddings: Union[np.ndarray, List[np.ndarray]],
return_alignments=False):
"""
Synthesizes mel spectrograms from texts and speaker embeddings.
:param texts: a list of N text prompts to be synthesized
:param embeddings: a numpy array or list of speaker embeddings of shape (N, 256)
:param return_alignments: if True, a matrix representing the alignments between the
characters
and each decoder output step will be returned for each spectrogram
:return: a list of N melspectrograms as numpy arrays of shape (80, Mi), where Mi is the
sequence length of spectrogram i, and possibly the alignments.
"""
# Load the model on the first request.
if not self.is_loaded():
self.load()
# Preprocess text inputs
inputs = [text_to_sequence(text.strip(), hparams.tts_cleaner_names) for text in texts]
if not isinstance(embeddings, list):
embeddings = [embeddings]
# Batch inputs
batched_inputs = [inputs[i:i+hparams.synthesis_batch_size]
for i in range(0, len(inputs), hparams.synthesis_batch_size)]
batched_embeds = [embeddings[i:i+hparams.synthesis_batch_size]
for i in range(0, len(embeddings), hparams.synthesis_batch_size)]
specs = []
for i, batch in enumerate(batched_inputs, 1):
if self.verbose:
print(f"\n| Generating {i}/{len(batched_inputs)}")
# Pad texts so they are all the same length
text_lens = [len(text) for text in batch]
max_text_len = max(text_lens)
chars = [pad1d(text, max_text_len) for text in batch]
chars = np.stack(chars)
# Stack speaker embeddings into 2D array for batch processing
speaker_embeds = np.stack(batched_embeds[i-1])
# Convert to tensor
chars = torch.tensor(chars).long().to(self.device)
speaker_embeddings = torch.tensor(speaker_embeds).float().to(self.device)
# Inference
_, mels, alignments = self._model.generate(chars, speaker_embeddings)
mels = mels.detach().cpu().numpy()
for m in mels:
# Trim silence from end of each spectrogram
while np.max(m[:, -1]) < hparams.tts_stop_threshold:
m = m[:, :-1]
specs.append(m)
if self.verbose:
print("\n\nDone.\n")
return (specs, alignments) if return_alignments else specs
@staticmethod
def load_preprocess_wav(fpath):
"""
Loads and preprocesses an audio file under the same conditions the audio files were used to
train the synthesizer.
"""
print("Loading fpath and hparams.sample_rate :",str(fpath), hparams.sample_rate)
wav = librosa.load(str(fpath), hparams.sample_rate)[0]
if hparams.rescale:
wav = wav / np.abs(wav).max() * hparams.rescaling_max
return wav
@staticmethod
def make_spectrogram(fpath_or_wav: Union[str, Path, np.ndarray]):
"""
Creates a mel spectrogram from an audio file in the same manner as the mel spectrograms that
were fed to the synthesizer when training.
"""
if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path):
wav = Synthesizer.load_preprocess_wav(fpath_or_wav)
else:
wav = fpath_or_wav
mel_spectrogram = audio.melspectrogram(wav, hparams).astype(np.float32)
return mel_spectrogram
@staticmethod
def griffin_lim(mel):
"""
Inverts a mel spectrogram using Griffin-Lim. The mel spectrogram is expected to have been built
with the same parameters present in hparams.py.
"""
return audio.inv_mel_spectrogram(mel, hparams)
def pad1d(x, max_len, pad_value=0):
return np.pad(x, (0, max_len - len(x)), mode="constant", constant_values=pad_value)
|