File size: 11,067 Bytes
c232276
 
 
 
94fdcd5
c232276
 
 
 
 
 
 
 
 
 
 
 
b9b8383
 
 
c232276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32268a1
b9b8383
 
 
 
 
 
 
 
 
c232276
b9b8383
 
 
 
 
 
 
c232276
b9b8383
 
 
 
c232276
 
 
 
 
 
 
 
 
b9b8383
c232276
b9b8383
 
 
 
c232276
 
 
b9b8383
c232276
b9b8383
c232276
 
b9b8383
c232276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9b8383
bf7e3bb
b9b8383
 
 
c232276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9b8383
 
c232276
 
 
 
 
 
 
 
 
 
 
 
 
 
b9b8383
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# frontend.py
import gradio as gr
import sys
import os
import spaces
# Add the parent directory to sys.path
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.insert(0, parent_dir)
#print(sys.path) #DEBUG

from flux_app.backend import ModelManager  # Absolute import
from flux_app.config import MAX_SEED      # Absolute import
from flux_app.lora_handling import (
    add_custom_lora, remove_custom_lora, prepare_prompt,
    unload_lora_weights, load_lora_weights_into_pipeline, update_selection
)
from flux_app.utilities import randomize_seed_if_needed, calculateDuration  # Absolute import

# Import the prompt enhancer function
from flux_app.enhance import generate as enhance_generate

# Dummy loras data for initial UI setup.
initial_loras = [
    {"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""},
]

class Frontend:
    def __init__(self, model_manager: ModelManager):
        self.model_manager = model_manager
        self.loras = initial_loras
        self.load_initial_loras()
        self.css = self.define_css()

    def define_css(self):
        # A cleaner, professional CSS styling.
        return '''
        /* Title Styling */
        #title {
            text-align: center;
            margin-bottom: 20px;
        }
        #title h1 {
            font-size: 2.5rem;
            margin: 0;
            color: #333;
        }
        /* Button and Column Styling */
        #gen_btn {
            width: 100%;
            padding: 12px;
            font-weight: bold;
            border-radius: 5px;
        }
        #gen_column {
            display: flex;
            align-items: center;
            justify-content: center;
        }
        /* Gallery and List Styling */
        #gallery .grid-wrap {
            margin-top: 15px;
        }
        #lora_list {
            background-color: #f5f5f5;
            padding: 10px;
            border-radius: 4px;
            font-size: 0.9rem;
        }
        .card_internal {
            display: flex;
            align-items: center;
            height: 100px;
            margin-top: 10px;
        }
        .card_internal img {
            margin-right: 10px;
        }
        .styler {
            --form-gap-width: 0px !important;
        }
        /* Progress Bar Styling */
        .progress-container {
            width: 100%;
            height: 20px;
            background-color: #e0e0e0;
            border-radius: 10px;
            overflow: hidden;
            margin-bottom: 20px;
        }
        .progress-bar {
            height: 100%;
            background-color: #4f46e5;
            transition: width 0.3s ease-in-out;
            width: calc(var(--current) / var(--total) * 100%);
        }
        '''

    def load_initial_loras(self):
        try:
            from flux_app.lora import loras as loras_list  # Absolute import
            self.loras = loras_list
        except ImportError:
            print("Warning: lora.py not found, using placeholder LoRAs.")
            pass

    @spaces.GPU(duration=100)
    def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
                 randomize_seed, seed, width, height, lora_scale, use_enhancer,
                 progress=gr.Progress(track_tqdm=True)):
        seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
        # Prepare the initial prompt (using LoRA info if needed)
        prompt_mash = prepare_prompt(prompt, selected_index, self.loras)
        enhanced_text = ""
        
        # If prompt enhancer is enabled, first run it to improve the prompt.
        if use_enhancer:
            # Stream the enhanced prompt (this will update the enhanced prompt textbox)
            for enhanced_chunk in enhance_generate(prompt_mash):
                enhanced_text = enhanced_chunk
                # Yield an update with no image yet and the current enhanced prompt.
                yield None, seed, gr.update(visible=False), enhanced_text
            # Use the final enhanced prompt as the prompt for image generation.
            prompt_mash = enhanced_text
        else:
            # Ensure the enhanced prompt textbox remains cleared.
            enhanced_text = ""
        
        # Continue with the image generation process.
        selected_lora = self.loras[selected_index]
        unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
        pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
        load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))

        if image_input is not None:
            final_image = self.model_manager.generate_image_to_image(
                prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
            )
            yield final_image, seed, gr.update(visible=False), enhanced_text
        else:
             image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
             final_image = None
             step_counter = 0
             for image in image_generator:
                step_counter += 1
                final_image = image
                progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
                yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_text

             yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_text

    def create_ui(self):
        # Using a base theme for a clean and professional look.
        with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
            title = gr.HTML(
                """<h1>Flux LoRA Generation</h1>""",
                elem_id="title",
            )
            selected_index = gr.State(None)

            with gr.Row():
                with gr.Column(scale=3):
                    prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
                with gr.Column(scale=1, elem_id="gen_column"):
                    generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
            with gr.Row():
                with gr.Column():
                    selected_info = gr.Markdown("")
                    gallery = gr.Gallery(
                        [(item["image"], item["title"]) for item in self.loras],
                        label="LoRA Collection",
                        allow_preview=False,
                        columns=3,
                        elem_id="gallery",
                        show_share_button=False
                    )
                    with gr.Group():
                        custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
                        gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
                    custom_lora_info = gr.HTML(visible=False)
                    custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
                with gr.Column():
                    progress_bar = gr.Markdown(elem_id="progress", visible=False)
                    result = gr.Image(label="Generated Image")

            with gr.Row():
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Row():
                        input_image = gr.Image(label="Input image", type="filepath")
                        image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
                    with gr.Column():
                        with gr.Row():
                            cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                            steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                        with gr.Row():
                            width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                            height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                        with gr.Row():
                            randomize_seed = gr.Checkbox(True, label="Randomize seed")
                            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                            lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
                        with gr.Row():
                            use_enhancer = gr.Checkbox(value=False, label="Use Prompt Enhancer")
                            show_enhanced_prompt = gr.Checkbox(value=False, label="Display Enhanced Prompt")
                    # Enhanced prompt textbox (hidden by default)
                    enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", visible=False)

            gallery.select(
                update_selection,
                inputs=[width, height, gr.State(self.loras)],
                outputs=[prompt, selected_info, selected_index, width, height]
            )
            custom_lora.input(
                add_custom_lora,
                inputs=[custom_lora, gr.State(self.loras)],
                outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
            )
            custom_lora_button.click(
                remove_custom_lora,
                outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
            )

            # Toggle the visibility of the enhanced prompt textbox based on the checkbox state.
            show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show),
                                        inputs=show_enhanced_prompt,
                                        outputs=enhanced_prompt_box)

            gr.on(
                triggers=[generate_button.click, prompt.submit],
                fn=self.run_lora,
                inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index,
                        randomize_seed, seed, width, height, lora_scale, use_enhancer],
                outputs=[result, seed, progress_bar, enhanced_prompt_box]
            )

            # Credits section added at the bottom
            with gr.Row():
                gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
            
            return app

if __name__ == "__main__":
    model_manager = ModelManager()
    frontend = Frontend(model_manager)
    app = frontend.create_ui()
    app.queue()
    app.launch()