Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,748 Bytes
c232276 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
# flux_app/enhance.py
import time
from huggingface_hub import InferenceClient
import gradio as gr
# Initialize the inference client with the new LLM
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Define the system prompt for enhancing user prompts
SYSTEM_PROMPT = (
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
"without changing the essence, only write the enhanced prompt and nothing else."
)
def format_prompt(message):
"""
Format the input message using the system prompt and a timestamp to ensure uniqueness.
"""
timestamp = time.time()
formatted = (
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
f"[INST] {message} {timestamp} [/INST]"
)
return formatted
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
"""
Generate an enhanced prompt using the new LLM.
This function yields intermediate results as they are generated.
"""
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": int(max_new_tokens),
"top_p": top_p,
"repetition_penalty": float(repetition_penalty),
"do_sample": True,
}
formatted_prompt = format_prompt(message)
stream = client.text_generation(
formatted_prompt,
**generate_kwargs,
stream=True,
details=True,
return_full_text=False,
)
output = ""
for response in stream:
token_text = response.token.text
output += token_text
yield output.strip('</s>')
return output.strip('</s>')
|