File size: 10,524 Bytes
c232276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# frontend.py
import gradio as gr
import sys
import os

# Add the parent directory to sys.path
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.insert(0, parent_dir)
#print(sys.path) #DEBUG

from flux_app.backend import ModelManager  # Absolute import
from flux_app.config import MAX_SEED      # Absolute import
from flux_app.lora_handling import (
    add_custom_lora, remove_custom_lora, prepare_prompt,
    unload_lora_weights, load_lora_weights_into_pipeline, update_selection
)
from flux_app.utilities import randomize_seed_if_needed, calculateDuration  # Absolute import
import spaces

# Import the prompt enhancer generate function from the new module
from flux_app.enhance import generate

# Dummy loras data for initial UI setup.
initial_loras = [
    {"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""},
]

class Frontend:
    def __init__(self, model_manager: ModelManager):
        self.model_manager = model_manager
        self.loras = initial_loras
        self.load_initial_loras()
        self.css = self.define_css()

    def define_css(self):
        # A cleaner, professional CSS styling.
        return '''
        /* Title Styling */
        #title {
            text-align: center;
            margin-bottom: 20px;
        }
        #title h1 {
            font-size: 2.5rem;
            margin: 0;
            color: #333;
        }
        /* Button and Column Styling */
        #gen_btn {
            width: 100%;
            padding: 12px;
            font-weight: bold;
            border-radius: 5px;
        }
        #gen_column {
            display: flex;
            align-items: center;
            justify-content: center;
        }
        /* Gallery and List Styling */
        #gallery .grid-wrap {
            margin-top: 15px;
        }
        #lora_list {
            background-color: #f5f5f5;
            padding: 10px;
            border-radius: 4px;
            font-size: 0.9rem;
        }
        .card_internal {
            display: flex;
            align-items: center;
            height: 100px;
            margin-top: 10px;
        }
        .card_internal img {
            margin-right: 10px;
        }
        .styler {
            --form-gap-width: 0px !important;
        }
        /* Progress Bar Styling */
        .progress-container {
            width: 100%;
            height: 20px;
            background-color: #e0e0e0;
            border-radius: 10px;
            overflow: hidden;
            margin-bottom: 20px;
        }
        .progress-bar {
            height: 100%;
            background-color: #4f46e5;
            transition: width 0.3s ease-in-out;
            width: calc(var(--current) / var(--total) * 100%);
        }
        '''

    def load_initial_loras(self):
        try:
            from flux_app.lora import loras as loras_list  # Absolute import
            self.loras = loras_list
        except ImportError:
            print("Warning: lora.py not found, using placeholder LoRAs.")
            pass

    @spaces.GPU(duration=100)
    def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer, progress=gr.Progress(track_tqdm=True)):
        # If prompt enhancer is enabled, generate the enhanced prompt.
        if use_enhancer:
            enhanced_prompt = ""
            # Generate the enhanced prompt (consume the generator to get the final result)
            for chunk in generate(prompt):
                enhanced_prompt = chunk
            prompt_used = enhanced_prompt
        else:
            enhanced_prompt = ""
            prompt_used = prompt

        seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
        prompt_mash = prepare_prompt(prompt_used, selected_index, self.loras)
        selected_lora = self.loras[selected_index]

        unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
        pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
        load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))

        if image_input is not None:
            final_image = self.model_manager.generate_image_to_image(
                prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
            )
            yield final_image, seed, gr.update(visible=False), enhanced_prompt
        else:
            image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
            final_image = None
            step_counter = 0
            for image in image_generator:
                step_counter += 1
                final_image = image
                progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
                yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_prompt

            yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_prompt

    def create_ui(self):
        with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
            title = gr.HTML(
                """<h1>Flux LoRA Generation</h1>""",
                elem_id="title",
            )
            selected_index = gr.State(None)

            with gr.Row():
                with gr.Column(scale=3):
                    prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
                with gr.Column(scale=1, elem_id="gen_column"):
                    generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
            with gr.Row():
                with gr.Column():
                    selected_info = gr.Markdown("")
                    gallery = gr.Gallery(
                        [(item["image"], item["title"]) for item in self.loras],
                        label="LoRA Collection",
                        allow_preview=False,
                        columns=3,
                        elem_id="gallery",
                        show_share_button=False
                    )
                    with gr.Group():
                        custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
                        gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
                    custom_lora_info = gr.HTML(visible=False)
                    custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
                with gr.Column():
                    progress_bar = gr.Markdown(elem_id="progress", visible=False)
                    result = gr.Image(label="Generated Image")

            with gr.Row():
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Row():
                        input_image = gr.Image(label="Input image", type="filepath")
                        image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
                    with gr.Column():
                        with gr.Row():
                            cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                            steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                        with gr.Row():
                            width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                            height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                        with gr.Row():
                            randomize_seed = gr.Checkbox(True, label="Randomize seed")
                            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                            lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
                    # Prompt Enhancer Section
                    with gr.Group():
                        use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=True)
                        show_enhanced_prompt = gr.Checkbox(label="Display Enhanced Prompt", value=False)
                        enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", lines=3, visible=False)

            gallery.select(
                update_selection,
                inputs=[width, height, gr.State(self.loras)],
                outputs=[prompt, selected_info, selected_index, width, height]
            )
            custom_lora.input(
                add_custom_lora,
                inputs=[custom_lora, gr.State(self.loras)],
                outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
            )
            custom_lora_button.click(
                remove_custom_lora,
                outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
            )

            # Toggle the visibility of the enhanced prompt textbox based on the checkbox state.
            show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show),
                                        inputs=show_enhanced_prompt,
                                        outputs=enhanced_prompt_box)

            gr.on(
                triggers=[generate_button.click, prompt.submit],
                fn=self.run_lora,
                inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer],
                outputs=[result, seed, progress_bar, enhanced_prompt_box]
            )

            # Credits section added at the bottom
            with gr.Row():
                gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
            
            return app

if __name__ == "__main__":
    model_manager = ModelManager()
    frontend = Frontend(model_manager)
    app = frontend.create_ui()
    app.queue()
    app.launch(debug=True)