File size: 3,642 Bytes
c232276
 
 
 
 
 
 
 
 
 
 
 
98605c5
c232276
 
98605c5
c232276
 
 
 
98605c5
 
 
 
 
 
c232276
 
 
 
 
98605c5
 
 
c232276
 
 
 
 
 
 
 
 
98605c5
c232276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98605c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# backend.py
import torch
from diffusers import (
    DiffusionPipeline,
    AutoencoderTiny,
    AutoencoderKL,
    AutoPipelineForImage2Image,
)
from flux_app.config import DTYPE, DEVICE, BASE_MODEL, TAEF1_MODEL, MAX_SEED  # Absolute import
from flux_app.utilities import calculate_shift, retrieve_timesteps, load_image_from_path, calculateDuration # Absolute import
from flux_app.lora_handling import  flux_pipe_call_that_returns_an_iterable_of_images # Absolute import
import time
from huggingface_hub import login

class ModelManager:
    def __init__(self, hf_token=None):
        self.pipe = None
        self.pipe_i2i = None
        self.good_vae = None
        self.taef1 = None

        if hf_token:
            login(token=hf_token)  # Log in with the provided token
        #else:  # Optional:  You could add a fallback to interactive login
        #   login()

        self.initialize_models()


    def initialize_models(self):
        """Initializes the diffusion pipelines and autoencoders."""
        self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE, token=True).to(DEVICE)
        self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE, token=True).to(DEVICE)
        self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1, token=True).to(DEVICE)
        self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
            BASE_MODEL,
            vae=self.good_vae,
            transformer=self.pipe.transformer,
            text_encoder=self.pipe.text_encoder,
            tokenizer=self.pipe.tokenizer,
            text_encoder_2=self.pipe.text_encoder_2,
            tokenizer_2=self.pipe.tokenizer_2,
            torch_dtype=DTYPE,
            token=True
        )
        self.pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(self.pipe)


    def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
        """Generates an image using the text-to-image pipeline."""
        self.pipe.to(DEVICE)
        generator = torch.Generator(device=DEVICE).manual_seed(seed)
        with calculateDuration("Generating image"):

            for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
                prompt=prompt_mash,
                num_inference_steps=steps,
                guidance_scale=cfg_scale,
                width=width,
                height=height,
                generator=generator,
                joint_attention_kwargs={"scale": lora_scale},
                output_type="pil",
                good_vae=self.good_vae,
            ):
                yield img

    def generate_image_to_image(self, prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
        """Generates an image using the image-to-image pipeline."""
        generator = torch.Generator(device=DEVICE).manual_seed(seed)
        self.pipe_i2i.to(DEVICE)
        image_input = load_image_from_path(image_input_path)
        with calculateDuration("Generating image to image"):
            final_image = self.pipe_i2i(
                prompt=prompt_mash,
                image=image_input,
                strength=image_strength,
                num_inference_steps=steps,
                guidance_scale=cfg_scale,
                width=width,
                height=height,
                generator=generator,
                joint_attention_kwargs={"scale": lora_scale},
                output_type="pil",
            ).images[0]
            return final_image