ruslanmv's picture
Update app.py
18d3f26 verified
raw
history blame
29.2 kB
##############################
# ===== Standard Imports =====
##############################
import os
import sys
import time
import random
import json
from math import floor
from typing import Any, Dict, List, Optional, Union
import torch
import numpy as np
import requests
from PIL import Image
# Diffusers imports
from diffusers import (
DiffusionPipeline,
AutoencoderTiny,
AutoencoderKL,
AutoPipelineForImage2Image,
)
from diffusers.utils import load_image
# Hugging Face Hub
from huggingface_hub import ModelCard, HfFileSystem
# Gradio (UI)
import gradio as gr
##############################
# ===== config.py =====
##############################
# Configuration parameters
DTYPE = torch.bfloat16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
TAEF1_MODEL = "madebyollin/taef1"
MAX_SEED = 2**32 - 1
##############################
# ===== utilities.py =====
##############################
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
def load_image_from_path(image_path: str):
"""Loads an image from a given file path."""
return load_image(image_path)
def randomize_seed_if_needed(randomize_seed: bool, seed: int, max_seed: int) -> int:
"""Randomizes the seed if requested."""
if randomize_seed:
return random.randint(0, max_seed)
return seed
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
##############################
# ===== enhance.py =====
##############################
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
"""
Generates an enhanced prompt using a streaming Hugging Face API.
Enhances the given prompt under 100 words without changing its essence.
"""
SYSTEM_PROMPT = (
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
"without changing the essence, only write the enhanced prompt and nothing else."
)
timestamp = time.time()
formatted_prompt = (
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
f"[INST] {message} {timestamp} [/INST]"
)
api_url = "https://ruslanmv-hf-llm-api.hf.space/api/v1/chat/completions"
headers = {"Content-Type": "application/json"}
payload = {
"model": "mixtral-8x7b",
"messages": [{"role": "user", "content": formatted_prompt}],
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_new_tokens,
"use_cache": False,
"stream": True
}
try:
response = requests.post(api_url, headers=headers, json=payload, stream=True)
response.raise_for_status()
full_output = ""
for line in response.iter_lines():
if not line:
continue
decoded_line = line.decode("utf-8").strip()
if decoded_line.startswith("data:"):
decoded_line = decoded_line[len("data:"):].strip()
if decoded_line == "[DONE]":
break
try:
json_data = json.loads(decoded_line)
for choice in json_data.get("choices", []):
delta = choice.get("delta", {})
content = delta.get("content", "")
full_output += content
yield full_output
if choice.get("finish_reason") == "stop":
return
except json.JSONDecodeError:
continue
except requests.exceptions.RequestException as e:
yield f"Error during generation: {str(e)}"
##############################
# ===== lora_handling.py =====
##############################
# A default list of LoRAs for the UI (this would normally be loaded from a separate module)
loras = [
{"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""}
]
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
guidance = (torch.full([1], guidance_scale, device=device, dtype=torch.float32)
.expand(latents.shape[0])
if self.transformer.config.guidance_embeds else None)
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
def get_huggingface_safetensors(link: str) -> tuple:
split_link = link.split("/")
if len(split_link) == 2:
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
if base_model not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"):
raise Exception("Flux LoRA Not Found!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if file.endswith(".safetensors"):
safetensors_name = file.split("/")[-1]
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
return split_link[1], link, safetensors_name, trigger_word, image_url
except Exception as e:
print(e)
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
else:
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
def check_custom_model(link: str) -> tuple:
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
return get_huggingface_safetensors(link)
def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str:
trigger_word_info = (
f"Using: <code><b>{trigger_word}</b></code> as the trigger word"
if trigger_word
else "No trigger word found. If there's a trigger word, include it in your prompt"
)
return f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{trigger_word_info}<br></small>
</div>
</div>
</div>
'''
def add_custom_lora(custom_lora: str, loras_list: list) -> tuple:
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = create_lora_card(title, repo, trigger_word, image)
existing_item_index = next((index for (index, item) in enumerate(loras_list) if item['repo'] == repo), None)
if existing_item_index is None:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
loras_list.append(new_item)
existing_item_index = len(loras_list) - 1
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
print(f"Error loading LoRA: {e}")
return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora() -> tuple:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def prepare_prompt(prompt: str, selected_index: Optional[int], loras_list: list) -> str:
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.🧨")
selected_lora = loras_list[selected_index]
trigger_word = selected_lora.get("trigger_word")
if trigger_word:
trigger_position = selected_lora.get("trigger_position", "append")
if trigger_position == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = prompt
return prompt_mash
def unload_lora_weights(pipe, pipe_i2i):
if pipe is not None:
pipe.unload_lora_weights()
if pipe_i2i is not None:
pipe_i2i.unload_lora_weights()
def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]):
pipe_to_use.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True
)
def update_selection(evt: gr.SelectData, width, height, loras_list):
selected_lora = loras_list[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
##############################
# ===== backend.py =====
##############################
class ModelManager:
def __init__(self, hf_token=None):
self.hf_token = hf_token
self.pipe = None
self.pipe_i2i = None
self.good_vae = None
self.taef1 = None
self.initialize_models()
def initialize_models(self):
"""Initializes the diffusion pipelines and autoencoders."""
self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE).to(DEVICE)
self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE).to(DEVICE)
# Optionally, if your model is private, you can pass `use_auth_token=self.hf_token` here.
self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1)
self.pipe = self.pipe.to(DEVICE)
self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
BASE_MODEL,
vae=self.good_vae,
transformer=self.pipe.transformer,
text_encoder=self.pipe.text_encoder,
tokenizer=self.pipe.tokenizer,
text_encoder_2=self.pipe.text_encoder_2,
tokenizer_2=self.pipe.tokenizer_2,
torch_dtype=DTYPE,
).to(DEVICE)
# Bind the custom LoRA call to the pipeline.
self.pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(self.pipe)
def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
"""Generates an image using the text-to-image pipeline."""
self.pipe.to(DEVICE)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
with calculateDuration("Generating image"):
for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=self.good_vae,
):
yield img
def generate_image_to_image(self, prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
"""Generates an image using the image-to-image pipeline."""
generator = torch.Generator(device=DEVICE).manual_seed(seed)
self.pipe_i2i.to(DEVICE)
image_input = load_image_from_path(image_input_path)
with calculateDuration("Generating image to image"):
final_image = self.pipe_i2i(
prompt=prompt_mash,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
).images[0]
return final_image
##############################
# ===== frontend.py =====
##############################
# The original code used a decorator from a module named `spaces`.
# If unavailable, we define a dummy decorator.
try:
import spaces
except ImportError:
class spaces:
@staticmethod
def GPU(duration):
def decorator(func):
return func
return decorator
class Frontend:
def __init__(self, model_manager: ModelManager):
self.model_manager = model_manager
self.loras = loras # Use the default LoRA list defined above.
self.load_initial_loras()
self.css = self.define_css()
def define_css(self):
# Clean and professional CSS styling.
return '''
/* Title Styling */
#title {
text-align: center;
margin-bottom: 20px;
}
#title h1 {
font-size: 2.5rem;
margin: 0;
color: #333;
}
/* Button and Column Styling */
#gen_btn {
width: 100%;
padding: 12px;
font-weight: bold;
border-radius: 5px;
}
#gen_column {
display: flex;
align-items: center;
justify-content: center;
}
/* Gallery and List Styling */
#gallery .grid-wrap {
margin-top: 15px;
}
#lora_list {
background-color: #f5f5f5;
padding: 10px;
border-radius: 4px;
font-size: 0.9rem;
}
.card_internal {
display: flex;
align-items: center;
height: 100px;
margin-top: 10px;
}
.card_internal img {
margin-right: 10px;
}
.styler {
--form-gap-width: 0px !important;
}
/* Progress Bar Styling */
.progress-container {
width: 100%;
height: 20px;
background-color: #e0e0e0;
border-radius: 10px;
overflow: hidden;
margin-bottom: 20px;
}
.progress-bar {
height: 100%;
background-color: #4f46e5;
transition: width 0.3s ease-in-out;
width: calc(var(--current) / var(--total) * 100%);
}
'''
def load_initial_loras(self):
try:
from lora import loras as loras_list
self.loras = loras_list
except ImportError:
print("Warning: lora.py not found, using placeholder LoRAs.")
pass
@spaces.GPU(duration=300)
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
randomize_seed, seed, width, height, lora_scale, use_enhancer,
progress=gr.Progress(track_tqdm=True)):
seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
# Prepare the prompt using the selected LoRA trigger word.
prompt_mash = prepare_prompt(prompt, selected_index, self.loras)
enhanced_text = ""
# Optionally enhance the prompt.
if use_enhancer:
for enhanced_chunk in generate(prompt_mash):
enhanced_text = enhanced_chunk
yield None, seed, gr.update(visible=False), enhanced_text
prompt_mash = enhanced_text
else:
enhanced_text = ""
selected_lora = self.loras[selected_index]
unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))
if image_input is not None:
final_image = self.model_manager.generate_image_to_image(
prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
)
yield final_image, seed, gr.update(visible=False), enhanced_text
else:
image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
final_image = None
step_counter = 0
for image in image_generator:
step_counter += 1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_text
yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_text
def create_ui(self):
with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
title = gr.HTML(
"""<h1>Flux LoRA Generation</h1>""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in self.loras],
label="LoRA Collection",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress", visible=False)
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
input_image = gr.Image(label="Input image", type="filepath")
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
with gr.Row():
use_enhancer = gr.Checkbox(value=False, label="Use Prompt Enhancer")
show_enhanced_prompt = gr.Checkbox(value=False, label="Display Enhanced Prompt")
enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", visible=False)
gallery.select(
update_selection,
inputs=[width, height, gr.State(self.loras)],
outputs=[prompt, selected_info, selected_index, width, height]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora, gr.State(self.loras)],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show),
inputs=show_enhanced_prompt,
outputs=enhanced_prompt_box)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=self.run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index,
randomize_seed, seed, width, height, lora_scale, use_enhancer],
outputs=[result, seed, progress_bar, enhanced_prompt_box]
)
with gr.Row():
gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
return app
##############################
# ===== Main app.py =====
##############################
if __name__ == "__main__":
# Get the Hugging Face token from the environment.
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise ValueError("Hugging Face token (HF_TOKEN) not found in environment variables. Please set it.")
model_manager = ModelManager(hf_token=hf_token)
frontend = Frontend(model_manager)
app = frontend.create_ui()
app.queue()
app.launch()