Spaces:
Running
on
Zero
Running
on
Zero
First commit
Browse files- flux_app/enhance.py +70 -43
- flux_app/enhance_v2.py +55 -0
flux_app/enhance.py
CHANGED
@@ -1,55 +1,82 @@
|
|
1 |
-
# flux_app/enhance.py
|
2 |
import time
|
3 |
-
|
4 |
-
import
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
)
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
Format the input message using the system prompt and a timestamp to ensure uniqueness.
|
18 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
timestamp = time.time()
|
20 |
-
|
21 |
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
|
22 |
f"[INST] {message} {timestamp} [/INST]"
|
23 |
)
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
"""
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
temperature = 1e-2
|
34 |
-
top_p = float(top_p)
|
35 |
-
generate_kwargs = {
|
36 |
"temperature": temperature,
|
37 |
-
"max_new_tokens": int(max_new_tokens),
|
38 |
"top_p": top_p,
|
39 |
-
"
|
40 |
-
"
|
|
|
41 |
}
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import time
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
|
5 |
+
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
|
6 |
+
"""
|
7 |
+
Generates an enhanced prompt using the streaming inference mechanism from a Hugging Face API endpoint.
|
8 |
+
This function formats the prompt with a system instruction, sends a streaming request to the API,
|
9 |
+
and yields the accumulated text as tokens are received.
|
10 |
|
11 |
+
Parameters:
|
12 |
+
message (str): The user's input prompt.
|
13 |
+
max_new_tokens (int): The maximum number of tokens to generate.
|
14 |
+
temperature (float): Sampling temperature.
|
15 |
+
top_p (float): Nucleus sampling parameter.
|
16 |
+
repetition_penalty (float): Penalty factor for repetition (not used in the payload but kept for API consistency).
|
17 |
|
18 |
+
Yields:
|
19 |
+
str: The accumulated generated text as it streams in.
|
|
|
20 |
"""
|
21 |
+
# Define the system prompt.
|
22 |
+
SYSTEM_PROMPT = (
|
23 |
+
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
|
24 |
+
"without changing the essence, only write the enhanced prompt and nothing else."
|
25 |
+
)
|
26 |
+
# Format the prompt with a timestamp for uniqueness.
|
27 |
timestamp = time.time()
|
28 |
+
formatted_prompt = (
|
29 |
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
|
30 |
f"[INST] {message} {timestamp} [/INST]"
|
31 |
)
|
32 |
+
|
33 |
+
# Define the API endpoint and headers.
|
34 |
+
api_url = "https://ruslanmv-hf-llm-api.hf.space/api/v1/chat/completions"
|
35 |
+
headers = {"Content-Type": "application/json"}
|
36 |
+
|
37 |
+
# Build the payload for the inference request.
|
38 |
+
payload = {
|
39 |
+
"model": "mixtral-8x7b",
|
40 |
+
"messages": [{"role": "user", "content": formatted_prompt}],
|
|
|
|
|
|
|
41 |
"temperature": temperature,
|
|
|
42 |
"top_p": top_p,
|
43 |
+
"max_tokens": max_new_tokens,
|
44 |
+
"use_cache": False,
|
45 |
+
"stream": True
|
46 |
}
|
47 |
+
|
48 |
+
try:
|
49 |
+
response = requests.post(api_url, headers=headers, json=payload, stream=True)
|
50 |
+
response.raise_for_status()
|
51 |
+
full_output = ""
|
52 |
+
|
53 |
+
# Process the streaming response line by line.
|
54 |
+
for line in response.iter_lines():
|
55 |
+
if not line:
|
56 |
+
continue
|
57 |
+
|
58 |
+
decoded_line = line.decode("utf-8").strip()
|
59 |
+
# Remove the "data:" prefix if present.
|
60 |
+
if decoded_line.startswith("data:"):
|
61 |
+
decoded_line = decoded_line[len("data:"):].strip()
|
62 |
+
|
63 |
+
# Check if the stream is finished.
|
64 |
+
if decoded_line == "[DONE]":
|
65 |
+
break
|
66 |
+
|
67 |
+
try:
|
68 |
+
json_data = json.loads(decoded_line)
|
69 |
+
for choice in json_data.get("choices", []):
|
70 |
+
delta = choice.get("delta", {})
|
71 |
+
content = delta.get("content", "")
|
72 |
+
full_output += content
|
73 |
+
yield full_output # Yield the accumulated text so far.
|
74 |
+
|
75 |
+
# If the finish reason is provided, stop further streaming.
|
76 |
+
if choice.get("finish_reason") == "stop":
|
77 |
+
return
|
78 |
+
except json.JSONDecodeError:
|
79 |
+
# If a line is not valid JSON, skip it.
|
80 |
+
continue
|
81 |
+
except requests.exceptions.RequestException as e:
|
82 |
+
yield f"Error during generation: {str(e)}"
|
flux_app/enhance_v2.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flux_app/enhance.py
|
2 |
+
import time
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Initialize the inference client with the new LLM
|
7 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
8 |
+
|
9 |
+
# Define the system prompt for enhancing user prompts
|
10 |
+
SYSTEM_PROMPT = (
|
11 |
+
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
|
12 |
+
"without changing the essence, only write the enhanced prompt and nothing else."
|
13 |
+
)
|
14 |
+
|
15 |
+
def format_prompt(message):
|
16 |
+
"""
|
17 |
+
Format the input message using the system prompt and a timestamp to ensure uniqueness.
|
18 |
+
"""
|
19 |
+
timestamp = time.time()
|
20 |
+
formatted = (
|
21 |
+
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
|
22 |
+
f"[INST] {message} {timestamp} [/INST]"
|
23 |
+
)
|
24 |
+
return formatted
|
25 |
+
|
26 |
+
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
|
27 |
+
"""
|
28 |
+
Generate an enhanced prompt using the new LLM.
|
29 |
+
This function yields intermediate results as they are generated.
|
30 |
+
"""
|
31 |
+
temperature = float(temperature)
|
32 |
+
if temperature < 1e-2:
|
33 |
+
temperature = 1e-2
|
34 |
+
top_p = float(top_p)
|
35 |
+
generate_kwargs = {
|
36 |
+
"temperature": temperature,
|
37 |
+
"max_new_tokens": int(max_new_tokens),
|
38 |
+
"top_p": top_p,
|
39 |
+
"repetition_penalty": float(repetition_penalty),
|
40 |
+
"do_sample": True,
|
41 |
+
}
|
42 |
+
formatted_prompt = format_prompt(message)
|
43 |
+
stream = client.text_generation(
|
44 |
+
formatted_prompt,
|
45 |
+
**generate_kwargs,
|
46 |
+
stream=True,
|
47 |
+
details=True,
|
48 |
+
return_full_text=False,
|
49 |
+
)
|
50 |
+
output = ""
|
51 |
+
for response in stream:
|
52 |
+
token_text = response.token.text
|
53 |
+
output += token_text
|
54 |
+
yield output.strip('</s>')
|
55 |
+
return output.strip('</s>')
|