Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,20 @@ import os
|
|
3 |
import torch
|
4 |
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
HF_TOKEN = os.environ.get('HF_TOKEN')
|
9 |
|
10 |
# Load the model and processor
|
@@ -12,11 +24,15 @@ model_name = "ruslanmv/Llama-3.2-11B-Vision-Instruct"
|
|
12 |
model = MllamaForConditionalGeneration.from_pretrained(
|
13 |
model_name,
|
14 |
use_auth_token=HF_TOKEN,
|
15 |
-
torch_dtype=torch.bfloat16,
|
16 |
-
device_map="auto",
|
17 |
)
|
|
|
|
|
|
|
18 |
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=HF_TOKEN)
|
19 |
|
|
|
20 |
def predict(image, text):
|
21 |
# Prepare the input messages
|
22 |
messages = [
|
@@ -30,7 +46,7 @@ def predict(image, text):
|
|
30 |
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
31 |
|
32 |
# Process the inputs and move to the appropriate device
|
33 |
-
inputs = processor(image, input_text, return_tensors="pt").to(
|
34 |
|
35 |
# Generate a response from the model
|
36 |
outputs = model.generate(**inputs, max_new_tokens=100)
|
|
|
3 |
import torch
|
4 |
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
5 |
from PIL import Image
|
6 |
+
import spaces
|
7 |
|
8 |
+
# Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled
|
9 |
+
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
10 |
+
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
11 |
+
|
12 |
+
# Determine the device (GPU if available, else CPU)
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
15 |
+
|
16 |
+
print(f"Using device: {device}")
|
17 |
+
print(f"Low memory mode: {LOW_MEMORY}")
|
18 |
+
|
19 |
+
# Get Hugging Face token from environment variables
|
20 |
HF_TOKEN = os.environ.get('HF_TOKEN')
|
21 |
|
22 |
# Load the model and processor
|
|
|
24 |
model = MllamaForConditionalGeneration.from_pretrained(
|
25 |
model_name,
|
26 |
use_auth_token=HF_TOKEN,
|
27 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
|
28 |
+
device_map="auto" if device == "cuda" else None, # Use device mapping if CUDA is available
|
29 |
)
|
30 |
+
|
31 |
+
# Move the model to the appropriate device (GPU if available)
|
32 |
+
model.to(device)
|
33 |
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=HF_TOKEN)
|
34 |
|
35 |
+
@spaces.GPU # Use the free GPU provided by Hugging Face Spaces
|
36 |
def predict(image, text):
|
37 |
# Prepare the input messages
|
38 |
messages = [
|
|
|
46 |
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
47 |
|
48 |
# Process the inputs and move to the appropriate device
|
49 |
+
inputs = processor(image, input_text, return_tensors="pt").to(device)
|
50 |
|
51 |
# Generate a response from the model
|
52 |
outputs = model.generate(**inputs, max_new_tokens=100)
|