ruslanmv's picture
Update app.py
13ac9a8 verified
raw
history blame
6.89 kB
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings, OpenAIEmbeddings
from pymilvus import Collection, connections
import json
import os
import subprocess
os.environ["TOKENIZERS_PARALLELISM"] = "false"
MILVUS_COLLECTION = os.environ.get("MILVUS_COLLECTION", "LangChainCollection")
MILVUS_HOST = os.environ.get("MILVUS_HOST", "")
MILVUS_PORT = "19530"
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "hkunlp/instructor-large")
EMBEDDING_LOADER = os.environ.get("EMBEDDING_LOADER", "HuggingFaceInstructEmbeddings")
EMBEDDING_LIST = ["HuggingFaceInstructEmbeddings", "HuggingFaceEmbeddings"]
# return top-k text chunks from vector store
TOP_K_DEFAULT = 15
TOP_K_MAX = 30
SCORE_DEFAULT = 0.33
BUTTON_MIN_WIDTH = 100
global g_emb
g_emb = None
global g_col
g_col = None
def init_emb(emb_name, emb_loader, db_col_textbox):
global g_emb
global g_col
g_emb = eval(emb_loader)(model_name=emb_name)
connections.connect(
host=MILVUS_HOST,
port=MILVUS_PORT
)
g_col = Collection(db_col_textbox)
g_col.load()
return (str(g_emb), str(g_col))
def get_emb():
return g_emb
def get_col():
return g_col
def remove_duplicates(documents, score_min):
seen_content = set()
unique_documents = []
for (doc, score) in documents:
if (doc.page_content not in seen_content) and (score >= score_min):
seen_content.add(doc.page_content)
unique_documents.append(doc)
return unique_documents
def get_data(query, top_k, score, db_col, db_index):
if not query:
return "Please init db in configuration"
embed_query = g_emb.embed_query(query)
search_params = {"metric_type": "L2",
"params": {"nprobe": 1},
"offset": 0}
results = g_col.search(
data=[embed_query],
anns_field="vector",
param=search_params,
limit=top_k,
expr=None,
output_fields=['source', 'text'],
consistency_level="Strong"
)
jsons = json.dumps([{'source': hit.entity.get('source'),
'text': hit.entity.get('text')}
for hit in results[0]],
indent=0)
return jsons
def run_command(command):
try:
result = subprocess.check_output(command, shell=True, text=True)
return result
except subprocess.CalledProcessError as e:
return f"Error: {e}"
with gr.Blocks(
title = "3GPP Database",
theme = "Base",
css = """.bigbox {
min-height:250px;
}
""") as demo:
with gr.Tab("Matching"):
with gr.Accordion("Vector similarity"):
with gr.Row():
with gr.Column():
top_k = gr.Slider(1,
TOP_K_MAX,
value=TOP_K_DEFAULT,
step=1,
label="Vector similarity top_k",
interactive=True)
with gr.Column():
score = gr.Slider(0.01,
0.99,
value=SCORE_DEFAULT,
step=0.01,
label="Vector similarity score",
interactive=True)
with gr.Row():
with gr.Column(scale=10):
input_box = gr.Textbox(label = "Input", placeholder="What are you looking for?")
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
btn_run = gr.Button("Run", variant="primary")
output_box = gr.JSON(label = "Output")
with gr.Tab("Configuration"):
with gr.Row():
btn_init = gr.Button("Init")
load_emb = gr.Textbox(get_emb, label = 'Embedding Client', show_label=True)
load_col = gr.Textbox(get_col, label = 'Milvus Collection', show_label=True)
with gr.Accordion("Embedding"):
with gr.Row():
with gr.Column():
emb_textbox = gr.Textbox(
label = "Embedding Model",
# show_label = False,
value = EMBEDDING_MODEL,
placeholder = "Paste Your Embedding Model Repo on HuggingFace",
lines=1,
interactive=True,
type='email')
with gr.Column():
emb_dropdown = gr.Dropdown(
EMBEDDING_LIST,
value=EMBEDDING_LOADER,
multiselect=False,
interactive=True,
label="Embedding Loader")
with gr.Accordion("Milvus Database"):
with gr.Row():
db_col_textbox = gr.Textbox(
label = "Milvus Collection",
# show_label = False,
value = MILVUS_COLLECTION,
placeholder = "Paste Your Milvus Collection (xx-xx-xx) and Hit ENTER",
lines=1,
interactive=True,
type='email')
db_index_textbox = gr.Textbox(
label = "Milvus Host",
# show_label = False,
value = MILVUS_HOST,
placeholder = "Paste Your Milvus Index (xxxx) and Hit ENTER",
lines=1,
interactive=True,
type='password')
btn_init.click(fn=init_emb,
inputs=[emb_textbox, emb_dropdown, db_col_textbox],
outputs=[load_emb, load_col])
btn_run.click(fn=get_data,
inputs=[input_box, top_k, score, db_col_textbox, db_index_textbox],
outputs=[output_box])
if __name__ == "__main__":
demo.queue()
demo.launch(server_name="0.0.0.0",
server_port=7860)
'''
import gradio as gr
import subprocess
def run_command(command):
try:
result = subprocess.check_output(command, shell=True, text=True)
return result
except subprocess.CalledProcessError as e:
return f"Error: {e}"
iface = gr.Interface(
fn=run_command,
inputs="text",
outputs="text",
title="Command Output Viewer",
description="Enter a command and view its output.",
examples=[
["ls"],
["pwd"],
["echo 'Hello, Gradio!'"],
["python --version"]
]
)
# Updated line with additional port binding for Milvus server
iface.launch(server_name="0.0.0.0", server_port=7860, share=True, debug=True)
'''