Spaces:
Sleeping
Sleeping
updates
Browse files- Dockerfile +4 -9
- main.py +41 -23
- milvus_singleton.py +9 -14
Dockerfile
CHANGED
@@ -2,30 +2,25 @@ FROM python:3.10.8
|
|
2 |
|
3 |
WORKDIR /app
|
4 |
|
5 |
-
|
6 |
-
COPY requirements.txt /app/
|
7 |
|
8 |
-
# Create cache and milvus_data directories and set permissions
|
9 |
RUN mkdir -p /app/cache /app/milvus_data && chmod -R 777 /app/cache /app/milvus_data
|
10 |
|
11 |
-
# Install dependencies
|
12 |
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
13 |
|
14 |
-
# Create a non-root user
|
15 |
RUN useradd -m -u 1000 user
|
|
|
16 |
USER user
|
17 |
|
18 |
-
# Set environment variables for Hugging Face cache and Milvus data
|
19 |
ENV HF_HOME=/app/cache \
|
20 |
HF_MODULES_CACHE=/app/cache/hf_modules \
|
21 |
MILVUS_DATA_DIR=/app/milvus_data \
|
22 |
HF_WORKER_COUNT=1
|
23 |
|
24 |
-
# Copy the application code (now main.py is at the root)
|
25 |
COPY . /app
|
26 |
|
27 |
-
# Expose
|
28 |
EXPOSE 7860
|
29 |
|
30 |
-
#
|
31 |
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
2 |
|
3 |
WORKDIR /app
|
4 |
|
5 |
+
COPY requirements.txt /app/requirements.txt
|
|
|
6 |
|
|
|
7 |
RUN mkdir -p /app/cache /app/milvus_data && chmod -R 777 /app/cache /app/milvus_data
|
8 |
|
|
|
9 |
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
10 |
|
|
|
11 |
RUN useradd -m -u 1000 user
|
12 |
+
|
13 |
USER user
|
14 |
|
|
|
15 |
ENV HF_HOME=/app/cache \
|
16 |
HF_MODULES_CACHE=/app/cache/hf_modules \
|
17 |
MILVUS_DATA_DIR=/app/milvus_data \
|
18 |
HF_WORKER_COUNT=1
|
19 |
|
|
|
20 |
COPY . /app
|
21 |
|
22 |
+
# Expose port for Uvicorn
|
23 |
EXPOSE 7860
|
24 |
|
25 |
+
# Command to run Uvicorn
|
26 |
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
CHANGED
@@ -1,44 +1,44 @@
|
|
1 |
from io import BytesIO
|
2 |
-
from fastapi import FastAPI, File, UploadFile
|
3 |
from fastapi.encoders import jsonable_encoder
|
4 |
from fastapi.responses import JSONResponse
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
from pydantic import BaseModel
|
7 |
-
from pymilvus import
|
|
|
|
|
8 |
import os
|
9 |
import pypdf
|
10 |
from uuid import uuid4
|
|
|
11 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
12 |
from sentence_transformers import SentenceTransformer
|
13 |
import torch
|
14 |
from milvus_singleton import MilvusClientSingleton
|
15 |
|
16 |
-
|
17 |
os.environ['HF_HOME'] = '/app/cache'
|
18 |
os.environ['HF_MODULES_CACHE'] = '/app/cache/hf_modules'
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
# Embedding model
|
21 |
-
embedding_model = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5',
|
22 |
-
trust_remote_code=True,
|
23 |
-
device='cuda' if torch.cuda.is_available() else 'cpu',
|
24 |
-
cache_folder='/app/cache')
|
25 |
-
|
26 |
-
# Milvus connection details
|
27 |
-
collection_name = "rag"
|
28 |
-
milvus_uri = os.getenv("MILVUS_URI", "http://localhost:19530") # Correct URI for Milvus
|
29 |
|
30 |
-
#
|
31 |
-
milvus_client =
|
32 |
|
33 |
-
def document_to_embeddings(content:
|
34 |
return embedding_model.encode(content, show_progress_bar=True)
|
35 |
|
36 |
app = FastAPI()
|
37 |
|
38 |
-
# Add CORS middleware
|
39 |
app.add_middleware(
|
40 |
CORSMiddleware,
|
41 |
-
allow_origins=["*"], # Replace with allowed origins for production
|
42 |
allow_credentials=True,
|
43 |
allow_methods=["*"],
|
44 |
allow_headers=["*"],
|
@@ -53,14 +53,20 @@ def create_a_collection(milvus_client, collection_name):
|
|
53 |
id_field = FieldSchema(name="id", dtype=DataType.VARCHAR, max_length=40, is_primary=True)
|
54 |
content_field = FieldSchema(name="content", dtype=DataType.VARCHAR, max_length=4096)
|
55 |
vector_field = FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=1024)
|
|
|
56 |
# Define the schema for the collection
|
57 |
schema = CollectionSchema(fields=[id_field, content_field, vector_field])
|
|
|
58 |
# Create the collection
|
59 |
milvus_client.create_collection(
|
60 |
collection_name=collection_name,
|
61 |
schema=schema
|
62 |
)
|
|
|
|
|
|
|
63 |
collection = Collection(name=collection_name)
|
|
|
64 |
# Create an index for the collection
|
65 |
# IVF_FLAT index is used here, with metric_type COSINE
|
66 |
index_params = {
|
@@ -70,10 +76,11 @@ def create_a_collection(milvus_client, collection_name):
|
|
70 |
"nlist": 128
|
71 |
}
|
72 |
}
|
|
|
73 |
# Create the index on the vector field
|
74 |
collection.create_index(
|
75 |
field_name="vector",
|
76 |
-
index_params=index_params
|
77 |
)
|
78 |
|
79 |
@app.get("/")
|
@@ -83,15 +90,21 @@ async def root():
|
|
83 |
@app.post("/insert")
|
84 |
async def insert(file: UploadFile = File(...)):
|
85 |
contents = await file.read()
|
|
|
86 |
if not milvus_client.has_collection(collection_name):
|
87 |
create_a_collection(milvus_client, collection_name)
|
|
|
88 |
contents = pypdf.PdfReader(BytesIO(contents))
|
|
|
89 |
extracted_text = ""
|
90 |
for page_num in range(len(contents.pages)):
|
91 |
page = contents.pages[page_num]
|
92 |
extracted_text += page.extract_text()
|
93 |
-
|
|
|
|
|
94 |
print(splitted_document_data)
|
|
|
95 |
data_objects = []
|
96 |
for doc in splitted_document_data:
|
97 |
data = {
|
@@ -100,32 +113,37 @@ async def insert(file: UploadFile = File(...)):
|
|
100 |
"content": doc,
|
101 |
}
|
102 |
data_objects.append(data)
|
|
|
103 |
print(data_objects)
|
|
|
104 |
try:
|
105 |
milvus_client.insert(collection_name=collection_name, data=data_objects)
|
|
|
106 |
except Exception as e:
|
107 |
raise JSONResponse(status_code=500, content={"error": str(e)})
|
108 |
else:
|
109 |
return JSONResponse(status_code=200, content={"result": 'good'})
|
110 |
-
|
111 |
class RAGRequest(BaseModel):
|
112 |
question: str
|
113 |
-
|
114 |
@app.post("/rag")
|
115 |
async def rag(request: RAGRequest):
|
116 |
question = request.question
|
117 |
if not question:
|
118 |
return JSONResponse(status_code=400, content={"message": "Please a question!"})
|
|
|
119 |
try:
|
120 |
search_res = milvus_client.search(
|
121 |
collection_name=collection_name,
|
122 |
data=[
|
123 |
document_to_embeddings(question)
|
124 |
-
],
|
125 |
-
limit=5, # Return top
|
126 |
# search_params={"metric_type": "COSINE"}, # Inner product distance
|
127 |
output_fields=["content"], # Return the text field
|
128 |
)
|
|
|
129 |
retrieved_lines_with_distances = [
|
130 |
(res["entity"]["content"]) for res in search_res[0]
|
131 |
]
|
|
|
1 |
from io import BytesIO
|
2 |
+
from fastapi import FastAPI, Form, Depends, Request, File, UploadFile
|
3 |
from fastapi.encoders import jsonable_encoder
|
4 |
from fastapi.responses import JSONResponse
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
from pydantic import BaseModel
|
7 |
+
from pymilvus import connections
|
8 |
+
|
9 |
+
|
10 |
import os
|
11 |
import pypdf
|
12 |
from uuid import uuid4
|
13 |
+
|
14 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
+
from pymilvus import MilvusClient, db, utility, Collection, CollectionSchema, FieldSchema, DataType
|
16 |
from sentence_transformers import SentenceTransformer
|
17 |
import torch
|
18 |
from milvus_singleton import MilvusClientSingleton
|
19 |
|
20 |
+
|
21 |
os.environ['HF_HOME'] = '/app/cache'
|
22 |
os.environ['HF_MODULES_CACHE'] = '/app/cache/hf_modules'
|
23 |
+
embedding_model = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5',
|
24 |
+
trust_remote_code=True,
|
25 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
26 |
+
cache_folder='/app/cache'
|
27 |
+
)
|
28 |
+
collection_name="rag"
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# milvus_client = MilvusClientSingleton.get_instance(uri="/app/milvus_data/milvus_demo.db")
|
32 |
+
milvus_client = MilvusClient(uri="/app/milvus_data/milvus_demo.db")
|
33 |
|
34 |
+
def document_to_embeddings(content:str) -> list:
|
35 |
return embedding_model.encode(content, show_progress_bar=True)
|
36 |
|
37 |
app = FastAPI()
|
38 |
|
|
|
39 |
app.add_middleware(
|
40 |
CORSMiddleware,
|
41 |
+
allow_origins=["*"], # Replace with the list of allowed origins for production
|
42 |
allow_credentials=True,
|
43 |
allow_methods=["*"],
|
44 |
allow_headers=["*"],
|
|
|
53 |
id_field = FieldSchema(name="id", dtype=DataType.VARCHAR, max_length=40, is_primary=True)
|
54 |
content_field = FieldSchema(name="content", dtype=DataType.VARCHAR, max_length=4096)
|
55 |
vector_field = FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=1024)
|
56 |
+
|
57 |
# Define the schema for the collection
|
58 |
schema = CollectionSchema(fields=[id_field, content_field, vector_field])
|
59 |
+
|
60 |
# Create the collection
|
61 |
milvus_client.create_collection(
|
62 |
collection_name=collection_name,
|
63 |
schema=schema
|
64 |
)
|
65 |
+
|
66 |
+
connections.connect(uri="/app/milvus_data/milvus_demo.db")
|
67 |
+
|
68 |
collection = Collection(name=collection_name)
|
69 |
+
|
70 |
# Create an index for the collection
|
71 |
# IVF_FLAT index is used here, with metric_type COSINE
|
72 |
index_params = {
|
|
|
76 |
"nlist": 128
|
77 |
}
|
78 |
}
|
79 |
+
|
80 |
# Create the index on the vector field
|
81 |
collection.create_index(
|
82 |
field_name="vector",
|
83 |
+
index_params=index_params # Pass the dictionary, not a string
|
84 |
)
|
85 |
|
86 |
@app.get("/")
|
|
|
90 |
@app.post("/insert")
|
91 |
async def insert(file: UploadFile = File(...)):
|
92 |
contents = await file.read()
|
93 |
+
|
94 |
if not milvus_client.has_collection(collection_name):
|
95 |
create_a_collection(milvus_client, collection_name)
|
96 |
+
|
97 |
contents = pypdf.PdfReader(BytesIO(contents))
|
98 |
+
|
99 |
extracted_text = ""
|
100 |
for page_num in range(len(contents.pages)):
|
101 |
page = contents.pages[page_num]
|
102 |
extracted_text += page.extract_text()
|
103 |
+
|
104 |
+
splitted_document_data = split_documents(extracted_text)
|
105 |
+
|
106 |
print(splitted_document_data)
|
107 |
+
|
108 |
data_objects = []
|
109 |
for doc in splitted_document_data:
|
110 |
data = {
|
|
|
113 |
"content": doc,
|
114 |
}
|
115 |
data_objects.append(data)
|
116 |
+
|
117 |
print(data_objects)
|
118 |
+
|
119 |
try:
|
120 |
milvus_client.insert(collection_name=collection_name, data=data_objects)
|
121 |
+
|
122 |
except Exception as e:
|
123 |
raise JSONResponse(status_code=500, content={"error": str(e)})
|
124 |
else:
|
125 |
return JSONResponse(status_code=200, content={"result": 'good'})
|
126 |
+
|
127 |
class RAGRequest(BaseModel):
|
128 |
question: str
|
129 |
+
|
130 |
@app.post("/rag")
|
131 |
async def rag(request: RAGRequest):
|
132 |
question = request.question
|
133 |
if not question:
|
134 |
return JSONResponse(status_code=400, content={"message": "Please a question!"})
|
135 |
+
|
136 |
try:
|
137 |
search_res = milvus_client.search(
|
138 |
collection_name=collection_name,
|
139 |
data=[
|
140 |
document_to_embeddings(question)
|
141 |
+
],
|
142 |
+
limit=5, # Return top 3 results
|
143 |
# search_params={"metric_type": "COSINE"}, # Inner product distance
|
144 |
output_fields=["content"], # Return the text field
|
145 |
)
|
146 |
+
|
147 |
retrieved_lines_with_distances = [
|
148 |
(res["entity"]["content"]) for res in search_res[0]
|
149 |
]
|
milvus_singleton.py
CHANGED
@@ -7,21 +7,16 @@ class MilvusClientSingleton:
|
|
7 |
@staticmethod
|
8 |
def get_instance(uri):
|
9 |
if MilvusClientSingleton._instance is None:
|
10 |
-
MilvusClientSingleton(
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
return MilvusClientSingleton._instance
|
12 |
|
13 |
-
def __init__(self
|
14 |
if MilvusClientSingleton._instance is not None:
|
15 |
raise Exception("This class is a singleton!")
|
16 |
-
|
17 |
-
# Use connections.connect() to establish the connection
|
18 |
-
connections.connect(uri=uri)
|
19 |
-
self._instance = connections # Store the connections object
|
20 |
-
print(f"Successfully connected to Milvus at {uri}")
|
21 |
-
except ConnectionConfigException as e:
|
22 |
-
print(f"Error connecting to Milvus: {e}")
|
23 |
-
raise
|
24 |
-
|
25 |
-
def __getattr__(self, name):
|
26 |
-
# Delegate attribute access to the default connection
|
27 |
-
return getattr(connections, name)
|
|
|
7 |
@staticmethod
|
8 |
def get_instance(uri):
|
9 |
if MilvusClientSingleton._instance is None:
|
10 |
+
MilvusClientSingleton()
|
11 |
+
# Initialize the client here
|
12 |
+
try:
|
13 |
+
MilvusClientSingleton._instance = connections.connect(uri=uri)
|
14 |
+
except ConnectionConfigException as e:
|
15 |
+
print(f"Error connecting to Milvus: {e}")
|
16 |
+
# Handle error appropriately
|
17 |
return MilvusClientSingleton._instance
|
18 |
|
19 |
+
def __init__(self):
|
20 |
if MilvusClientSingleton._instance is not None:
|
21 |
raise Exception("This class is a singleton!")
|
22 |
+
self._instance = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|