Spaces:
Sleeping
Sleeping
File size: 9,591 Bytes
306849a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import gradio as gr
import zipfile
import os
import shutil
import subprocess
from chat_with_project import query_project
from get_prompts import get_prompt_for_mode
from dotenv import load_dotenv, set_key
from milvus import initialize_milvus, DEFAULT_MILVUS_HOST, DEFAULT_MILVUS_PORT, DEFAULT_COLLECTION_NAME, DEFAULT_DIMENSION, DEFAULT_MAX_RETRIES, DEFAULT_RETRY_DELAY
# --- Configuration and Setup ---
# Define paths for workspace and extraction directories
WORKSPACE_DIR = "workspace"
EXTRACTION_DIR = "extraction"
def clear_directories():
"""Clears the workspace and extraction directories."""
for directory in [WORKSPACE_DIR, EXTRACTION_DIR]:
if os.path.exists(directory):
shutil.rmtree(directory)
os.makedirs(directory, exist_ok=True)
# Clear directories at startup
clear_directories()
# --- API Key Management ---
def ensure_env_file_exists():
"""Ensures that a .env file exists in the project root."""
if not os.path.exists(".env"):
with open(".env", "w") as f:
f.write("") # Create an empty .env file
def load_api_key():
"""Loads the API key from the .env file or the environment."""
ensure_env_file_exists()
load_dotenv()
return os.environ.get("OPENAI_API_KEY")
def update_api_key(api_key):
"""Updates the API key in the .env file."""
if api_key:
set_key(".env", "OPENAI_API_KEY", api_key)
load_dotenv() # Reload environment variables
return "API key updated successfully."
else:
return "API key cannot be empty."
def is_api_key_set():
"""Checks if the API key is set."""
return bool(load_api_key())
# --- Core Functionalities ---
def process_zip(zip_file_path):
"""Extracts a zip file, analyzes content, and stores information."""
try:
# Clear existing workspace and extraction directories before processing
clear_directories()
# Extract the zip file
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(WORKSPACE_DIR)
# Run extract.py
subprocess.run(["python", "./utils/extract.py", WORKSPACE_DIR], check=True)
return "Processing complete! Results saved in the 'extraction' directory."
except Exception as e:
return f"An error occurred: {e}"
def init_milvus(milvus_host, milvus_port, collection_name, dimension, max_retries, retry_delay):
"""Initializes or loads the Milvus vector database."""
try:
# Convert string inputs to appropriate types
milvus_port = int(milvus_port)
dimension = int(dimension)
max_retries = int(max_retries)
retry_delay = int(retry_delay)
initialize_milvus(milvus_host, milvus_port, collection_name, dimension, max_retries, retry_delay)
return "Milvus database initialized or loaded successfully."
except Exception as e:
return f"Error initializing Milvus: {e}"
# --- Chatbot Verification ---
def is_project_loaded():
"""Checks if a project has been loaded (i.e., if the extraction directory contains .pkl files)."""
extraction_dir = "extraction"
pkl_files = [f for f in os.listdir(extraction_dir) if f.endswith('.pkl')]
return bool(pkl_files)
# --- Gradio UI Components ---
# Chat Interface
def chat_ui(query, history, mode):
"""Handles the chat interaction for Analyzer, Debugger, and Developer modes."""
api_key = load_api_key()
if not api_key:
return "Error: OpenAI API key not set. Please set the API key in the Settings tab.", []
if not is_project_loaded():
return "Error: No project loaded. Please upload and process a ZIP file first.", []
# Initialize history if None
if history is None:
history = []
print(f"Chat Mode: {mode}")
system_prompt = get_prompt_for_mode(mode)
print(f"System Prompt: {system_prompt}")
# Pass the query and system prompt to the LLM
response = query_project(query, system_prompt)
print(f"Response from query_project: {response}")
if response is None or not response.strip():
response = "An error occurred during processing. Please check the logs."
if mode == "developer":
extracted_files = extract_files_from_response(response)
# Format the output for developer mode
developer_response = ""
for filepath, content in extracted_files.items():
developer_response += f"**{filepath}:**\n`python\n{content}\n`\n\n"
history.append((query, developer_response))
# Return history and an empty string for the text output (as it's handled by the chatbot)
return history, history
else:
# Format the output for non-developer modes
formatted_response = response.replace('\n', ' \n') # Use two spaces for markdown line breaks
history.append((query, formatted_response))
# Return history and an empty string for the text output (as it's handled by the chatbot)
return history, history
def extract_files_from_response(response):
"""
Parses the LLM response to extract file paths and their corresponding code content.
Args:
response (str): The raw response string from the LLM.
Returns:
dict: A dictionary where keys are file paths and values are the code content of each file.
"""
files = {}
current_file = None
current_content = []
for line in response.splitlines():
if line.startswith("--- BEGIN FILE:"):
if current_file is not None:
# Save previous file content
files[current_file] = "\n".join(current_content)
# Start a new file
current_file = line.replace("--- BEGIN FILE:", "").strip()
current_content = []
elif line.startswith("--- END FILE:"):
if current_file is not None:
# Save current file content
files[current_file] = "\n".join(current_content)
current_file = None
current_content = []
elif current_file is not None:
# Append line to current file content
current_content.append(line)
return files
# ZIP Processing Interface
zip_iface = gr.Interface(
fn=process_zip,
inputs=gr.File(label="Upload ZIP File"),
outputs="text",
title="Zip File Analyzer",
description="Upload a zip file to analyze and store its contents.",
)
# Milvus Initialization Interface
milvus_iface = gr.Interface(
fn=init_milvus,
inputs=[
gr.Textbox(label="Milvus Host", placeholder=DEFAULT_MILVUS_HOST, value=DEFAULT_MILVUS_HOST),
gr.Textbox(label="Milvus Port", placeholder=DEFAULT_MILVUS_PORT, value=DEFAULT_MILVUS_PORT),
gr.Textbox(label="Collection Name", placeholder=DEFAULT_COLLECTION_NAME, value=DEFAULT_COLLECTION_NAME),
gr.Textbox(label="Dimension", placeholder=str(DEFAULT_DIMENSION), value=str(DEFAULT_DIMENSION)),
gr.Textbox(label="Max Retries", placeholder=str(DEFAULT_MAX_RETRIES), value=str(DEFAULT_MAX_RETRIES)),
gr.Textbox(label="Retry Delay (seconds)", placeholder=str(DEFAULT_RETRY_DELAY), value=str(DEFAULT_RETRY_DELAY))
],
outputs="text",
title="Milvus Database Initialization",
description="Initialize or load the Milvus vector database.",
)
# Gradio Chatbot UI Interface
chat_iface = gr.Interface(
fn=chat_ui,
inputs=[
gr.Textbox(label="Ask a question", placeholder="Type your question here"),
gr.State(), # Maintains chat history
gr.Radio(["analyzer", "debugger", "developer"], label="Chat Mode", value="analyzer")
],
outputs=[
gr.Chatbot(label="Chat with Project"),
"state" # This is to store the state,
],
title="Chat with your Project",
description="Ask questions about the data extracted from the zip file.",
# Example usage - Corrected to only include instruction and mode
examples=[
["What is this project about?", "analyzer"],
["Are there any potential bugs?", "debugger"],
["How does the data flow through the application?", "analyzer"],
["Explain the main components of the architecture.", "analyzer"],
["What are the dependencies of this project?", "analyzer"],
["Are there any potential memory leaks?", "debugger"],
["Identify any areas where the code could be optimized.","debugger"],
["Implement basic logging for the main application and save logs to a file.", "developer"],
["Use try/except blocks in main functions to handle exceptions", "developer"]
],
)
# Settings Interface
settings_iface = gr.Interface(
fn=update_api_key,
inputs=gr.Textbox(label="OpenAI API Key", type="password"),
outputs="text",
title="Settings",
description="Set your OpenAI API key.",
)
# Status Interface
def get_api_key_status():
if is_api_key_set():
return "API key status: Set"
else:
return "API key status: Not set"
status_iface = gr.Interface(
fn=get_api_key_status,
inputs=None,
outputs="text",
live=True,
title="API Key Status"
)
# Add credits to the UI
credits = gr.Markdown("## Credits\n\nCreated by [Ruslan Magana Vsevolodovna](https://ruslanmv.com/)")
# --- Main Application Launch ---
# Combine the interfaces using Tabs
demo = gr.TabbedInterface(
[zip_iface, milvus_iface, chat_iface, settings_iface, status_iface],
["Process ZIP", "Init Milvus", "Chat with Project", "Settings", "Status"],
)
# Launch the app with credits
demo.queue().launch() |