First commit
Browse files- README.md +1 -1
- app.py +158 -0
- requirements.txt +7 -0
README.md
CHANGED
@@ -7,7 +7,7 @@ sdk: gradio
|
|
7 |
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
short_description: Extract tables from images
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
7 |
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: Extract tables from images to CSV
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Package installation
|
2 |
+
#!pip install git+https://github.com/huggingface/transformers.git
|
3 |
+
#!pip install torch, accelerate, bitsandbyte, sentencepiece, pillow
|
4 |
+
#!pip install spaces
|
5 |
+
import gradio as gr
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
from transformers import AutoProcessor, MllamaForConditionalGeneration, TextStreamer
|
9 |
+
from PIL import Image
|
10 |
+
import csv
|
11 |
+
# Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled
|
12 |
+
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
13 |
+
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
14 |
+
IS_GDRVIE = False
|
15 |
+
|
16 |
+
# Determine the device (GPU if available, else CPU)
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
19 |
+
print(f"Using device: {device}")
|
20 |
+
print(f"Low memory mode: {LOW_MEMORY}")
|
21 |
+
|
22 |
+
# Get Hugging Face token from environment variables
|
23 |
+
HF_TOKEN = os.environ.get('HF_TOKEN')
|
24 |
+
|
25 |
+
# Define the model name
|
26 |
+
model_name = "Llama-3.2-11B-Vision-Instruct"
|
27 |
+
if IS_GDRVIE:
|
28 |
+
# Define the path to the model directory in your Google Drive
|
29 |
+
model_path = "/content/drive/MyDrive/models/" + model_name
|
30 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
31 |
+
model_path,
|
32 |
+
torch_dtype=torch.bfloat16,
|
33 |
+
device_map="auto",
|
34 |
+
)
|
35 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
36 |
+
else:
|
37 |
+
model_name = "ruslanmv/" + model_name
|
38 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
39 |
+
model_name,
|
40 |
+
use_auth_token=HF_TOKEN,
|
41 |
+
torch_dtype=torch.bfloat16,
|
42 |
+
device_map="auto",
|
43 |
+
)
|
44 |
+
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=HF_TOKEN)
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
# Tie the model weights to ensure the model is properly loaded
|
49 |
+
if hasattr(model, "tie_weights"):
|
50 |
+
model.tie_weights()
|
51 |
+
|
52 |
+
example = '''Table 1:
|
53 |
+
header1,header2,header3
|
54 |
+
value1,value2,value3
|
55 |
+
|
56 |
+
Table 2:
|
57 |
+
header1,header2,header3
|
58 |
+
value1,value2,value3
|
59 |
+
'''
|
60 |
+
|
61 |
+
prompt_message = """Please extract all tables from the image and generate CSV files.
|
62 |
+
Each table should be separated using the format table_n.csv, where n is the table number.
|
63 |
+
You must use CSV format with commas as the delimiter. Do not use markdown format. Ensure you use the original table headers and content from the image.
|
64 |
+
Only answer with the CSV content. Dont explain the tables.
|
65 |
+
An example of the formatting output is as follows:
|
66 |
+
""" + example
|
67 |
+
|
68 |
+
|
69 |
+
# Stream LLM response generator
|
70 |
+
def stream_response(inputs):
|
71 |
+
streamer = TextStreamer(tokenizer=processor.tokenizer)
|
72 |
+
for token in model.generate(**inputs, max_new_tokens=2000, do_sample=True, streamer=streamer):
|
73 |
+
yield processor.decode(token, skip_special_tokens=True)
|
74 |
+
|
75 |
+
|
76 |
+
@spaces.GPU # Use the free GPU provided by Hugging Face Spaces
|
77 |
+
# Predict function for Gradio app
|
78 |
+
def predict(message, image):
|
79 |
+
# Prepare the input messages
|
80 |
+
messages = [
|
81 |
+
{"role": "user", "content": [
|
82 |
+
{"type": "image"}, # Specify that an image is provided
|
83 |
+
{"type": "text", "text": message} # Add the user-provided text input
|
84 |
+
]}
|
85 |
+
]
|
86 |
+
|
87 |
+
# Create the input text using the processor's chat template
|
88 |
+
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
89 |
+
|
90 |
+
# Process the inputs and move to the appropriate device
|
91 |
+
inputs = processor(image, input_text, return_tensors="pt").to(device)
|
92 |
+
|
93 |
+
# Return a streaming generator of responses
|
94 |
+
full_response = ""
|
95 |
+
for response in stream_response(inputs):
|
96 |
+
# print(response, end="", flush=True) # Print each part of the response as it's generated
|
97 |
+
full_response += response
|
98 |
+
return extract_and_save_tables(full_response)
|
99 |
+
|
100 |
+
# Extract tables and save them to CSV
|
101 |
+
files_list = []
|
102 |
+
|
103 |
+
def clean_full_response(full_response):
|
104 |
+
"""Cleans the full response by removing the prompt input before the tables."""
|
105 |
+
# The part of the prompt input to remove
|
106 |
+
message_to_remove = prompt_message
|
107 |
+
# Remove the message and return only the tables
|
108 |
+
return full_response.replace(message_to_remove, "").strip()
|
109 |
+
|
110 |
+
def extract_and_save_tables(full_response):
|
111 |
+
"""Extracts CSV tables from the cleaned_response string and saves them as separate files."""
|
112 |
+
cleaned_response = clean_full_response(full_response)
|
113 |
+
files_list = [] # Initialize the list of file names
|
114 |
+
tables = cleaned_response.split("Table ") # Split the response by table sections
|
115 |
+
|
116 |
+
for i, table in enumerate(tables[1:], start=1): # Start with index 1 for "Table 1"
|
117 |
+
table_name = f"table_{i}.csv" # File name for the current table
|
118 |
+
rows = table.strip().splitlines()[1:] # Remove "Table n:" line and split the table into rows
|
119 |
+
rows = [row.replace('"', '').split(",") for row in rows if row.strip()] # Clean and split by commas
|
120 |
+
|
121 |
+
# Save the table as a CSV file
|
122 |
+
with open(table_name, mode="w", newline='') as file:
|
123 |
+
writer = csv.writer(file)
|
124 |
+
writer.writerows(rows)
|
125 |
+
|
126 |
+
files_list.append(table_name) # Append the saved file to the list
|
127 |
+
|
128 |
+
return files_list
|
129 |
+
|
130 |
+
|
131 |
+
# Gradio interface
|
132 |
+
def gradio_app():
|
133 |
+
def process_image(image):
|
134 |
+
message = prompt_message
|
135 |
+
files = predict(message, image)
|
136 |
+
return "Tables extracted and saved as CSV files.", files
|
137 |
+
# Input components
|
138 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
139 |
+
|
140 |
+
#message_input = gr.Textbox(lines=2, placeholder="Enter your message", value=message)
|
141 |
+
output_text = gr.Textbox(label="Extraction Status")
|
142 |
+
file_output = gr.File(label="Download CSV files")
|
143 |
+
|
144 |
+
# Gradio interface
|
145 |
+
iface = gr.Interface(
|
146 |
+
fn=process_image,
|
147 |
+
inputs=[image_input],
|
148 |
+
outputs=[output_text, file_output],
|
149 |
+
title="Table Extractor and CSV Converter",
|
150 |
+
description="Upload an image to extract tables and download CSV files.",
|
151 |
+
allow_flagging="never"
|
152 |
+
)
|
153 |
+
|
154 |
+
iface.launch(debug=True)
|
155 |
+
|
156 |
+
|
157 |
+
# Call the Gradio app function to launch the app
|
158 |
+
gradio_app()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
git+https://github.com/huggingface/transformers.git
|
3 |
+
torch
|
4 |
+
accelerate
|
5 |
+
bitsandbytes
|
6 |
+
sentencepiece
|
7 |
+
Pillow
|