Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,26 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
import
|
5 |
import torch
|
|
|
6 |
from min_dalle import MinDalle
|
7 |
-
from
|
8 |
from PIL import Image, ImageDraw, ImageFont
|
9 |
-
import textwrap
|
10 |
from mutagen.mp3 import MP3
|
11 |
from gtts import gTTS
|
12 |
from pydub import AudioSegment
|
13 |
-
import
|
14 |
-
import
|
15 |
-
import nltk
|
16 |
-
import subprocess
|
17 |
-
import shutil
|
18 |
import matplotlib.pyplot as plt
|
19 |
-
import gc #
|
|
|
20 |
from audio import *
|
21 |
-
|
22 |
-
|
23 |
-
multiprocessing.set_start_method("spawn")
|
24 |
-
|
|
|
25 |
if os.environ.get("SPACES_ZERO_GPU") is not None:
|
26 |
import spaces
|
27 |
else:
|
@@ -31,45 +30,63 @@ else:
|
|
31 |
def wrapper(*args, **kwargs):
|
32 |
return func(*args, **kwargs)
|
33 |
return wrapper
|
34 |
-
# Download necessary NLTK data
|
35 |
-
try:
|
36 |
-
nltk.data.find('tokenizers/punkt')
|
37 |
-
except LookupError:
|
38 |
-
nltk.download('punkt')
|
39 |
-
|
40 |
-
description = "Video Story Generator with Audio \n PS: Generation of video by using Artifical Intellingence by dalle-mini and distilbart and gtss "
|
41 |
-
title = "Video Story Generator with Audio by using dalle-mini and distilbart and gtss "
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def log_gpu_memory():
|
|
|
54 |
if torch.cuda.is_available():
|
55 |
print(subprocess.check_output('nvidia-smi').decode('utf-8'))
|
56 |
else:
|
57 |
print("CUDA is not available. Cannot log GPU memory.")
|
58 |
|
59 |
-
#
|
60 |
-
# Check for GPU availability
|
61 |
def check_gpu_availability():
|
|
|
62 |
if torch.cuda.is_available():
|
63 |
print(f"CUDA devices: {torch.cuda.device_count()}")
|
64 |
print(f"Current device: {torch.cuda.current_device()}")
|
65 |
print(torch.cuda.get_device_properties(torch.cuda.current_device()))
|
66 |
else:
|
67 |
print("CUDA is not available. Running on CPU.")
|
|
|
68 |
check_gpu_availability()
|
69 |
-
|
|
|
70 |
def initialize_min_dalle_with_gpu():
|
|
|
71 |
@spaces.GPU(duration=60 * 3)
|
72 |
def load_model():
|
|
|
73 |
return MinDalle(
|
74 |
is_mega=True,
|
75 |
models_root='pretrained',
|
@@ -80,9 +97,10 @@ def initialize_min_dalle_with_gpu():
|
|
80 |
)
|
81 |
return load_model()
|
82 |
|
83 |
-
# Initialize MinDalle
|
84 |
min_dalle_model = initialize_min_dalle_with_gpu()
|
85 |
|
|
|
86 |
def generate_image_with_min_dalle(
|
87 |
model: MinDalle,
|
88 |
text: str,
|
|
|
1 |
+
import os
|
2 |
+
import multiprocessing
|
3 |
+
import subprocess
|
4 |
+
import nltk
|
5 |
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
from min_dalle import MinDalle
|
8 |
+
from moviepy.editor import VideoFileClip
|
9 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
10 |
from mutagen.mp3 import MP3
|
11 |
from gtts import gTTS
|
12 |
from pydub import AudioSegment
|
13 |
+
import textwrap
|
14 |
+
import gradio as gr
|
|
|
|
|
|
|
15 |
import matplotlib.pyplot as plt
|
16 |
+
import gc # Garbage collector
|
17 |
+
from huggingface_hub import snapshot_download
|
18 |
from audio import *
|
19 |
+
|
20 |
+
# Ensure proper multiprocessing start method
|
21 |
+
multiprocessing.set_start_method("spawn", force=True)
|
22 |
+
|
23 |
+
# GPU Fallback Setup
|
24 |
if os.environ.get("SPACES_ZERO_GPU") is not None:
|
25 |
import spaces
|
26 |
else:
|
|
|
30 |
def wrapper(*args, **kwargs):
|
31 |
return func(*args, **kwargs)
|
32 |
return wrapper
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Download necessary NLTK data
|
35 |
+
def setup_nltk():
|
36 |
+
"""Ensure required NLTK data is available."""
|
37 |
+
try:
|
38 |
+
nltk.data.find('tokenizers/punkt')
|
39 |
+
except LookupError:
|
40 |
+
nltk.download('punkt')
|
41 |
+
|
42 |
+
setup_nltk()
|
43 |
+
|
44 |
+
# Constants
|
45 |
+
DESCRIPTION = (
|
46 |
+
"Video Story Generator with Audio\n"
|
47 |
+
"PS: Generation of video by using Artificial Intelligence via dalle-mini, distilbart, and GTTS."
|
48 |
+
)
|
49 |
+
TITLE = "Video Story Generator with Audio by using dalle-mini, distilbart, and GTTS."
|
50 |
+
|
51 |
+
# Load Tokenizer and Model for Text Summarization
|
52 |
+
def load_text_summarization_model():
|
53 |
+
"""Load the tokenizer and model for text summarization."""
|
54 |
+
print("Loading text summarization model...")
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
56 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
57 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
58 |
+
print(f"Using device: {device}")
|
59 |
+
model.to(device)
|
60 |
+
return tokenizer, model, device
|
61 |
+
|
62 |
+
tokenizer, model, device = load_text_summarization_model()
|
63 |
+
|
64 |
+
# Log GPU Memory (optional, for debugging)
|
65 |
def log_gpu_memory():
|
66 |
+
"""Log GPU memory usage."""
|
67 |
if torch.cuda.is_available():
|
68 |
print(subprocess.check_output('nvidia-smi').decode('utf-8'))
|
69 |
else:
|
70 |
print("CUDA is not available. Cannot log GPU memory.")
|
71 |
|
72 |
+
# Check GPU Availability
|
|
|
73 |
def check_gpu_availability():
|
74 |
+
"""Print GPU availability and device details."""
|
75 |
if torch.cuda.is_available():
|
76 |
print(f"CUDA devices: {torch.cuda.device_count()}")
|
77 |
print(f"Current device: {torch.cuda.current_device()}")
|
78 |
print(torch.cuda.get_device_properties(torch.cuda.current_device()))
|
79 |
else:
|
80 |
print("CUDA is not available. Running on CPU.")
|
81 |
+
|
82 |
check_gpu_availability()
|
83 |
+
|
84 |
+
# GPU-Safe MinDalle Model Loading
|
85 |
def initialize_min_dalle_with_gpu():
|
86 |
+
"""Load the MinDalle model with GPU support."""
|
87 |
@spaces.GPU(duration=60 * 3)
|
88 |
def load_model():
|
89 |
+
print("Loading MinDalle model...")
|
90 |
return MinDalle(
|
91 |
is_mega=True,
|
92 |
models_root='pretrained',
|
|
|
97 |
)
|
98 |
return load_model()
|
99 |
|
100 |
+
# Initialize MinDalle Model
|
101 |
min_dalle_model = initialize_min_dalle_with_gpu()
|
102 |
|
103 |
+
|
104 |
def generate_image_with_min_dalle(
|
105 |
model: MinDalle,
|
106 |
text: str,
|