import logging
import os
import uuid
import time
import gradio as gr
import soundfile as sf
from model import get_pretrained_model, language_to_models
# Function to update model dropdown based on language selection
#def update_model_dropdown(language):
# if language in language_to_models:
# choices = language_to_models[language]
# return gr.Dropdown.update(choices=choices, value=choices[0])
# else:
# raise ValueError(f"Unsupported language: {language}")
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown(
choices=choices,
value=choices[0],
interactive=True,
)
raise ValueError(f"Unsupported language: {language}")
# Function to process text to speech conversion
def process(language, repo_id, text, sid, speed):
logging.info(f"Input text: {text}, SID: {sid}, Speed: {speed}")
sid = int(sid)
tts = get_pretrained_model(repo_id, speed)
start = time.time()
audio = tts.generate(text, sid=sid)
duration = len(audio.samples) / audio.sample_rate
elapsed_seconds = time.time() - start
rtf = elapsed_seconds / duration
info = f"""
Wave duration: {duration:.3f} s
Processing time: {elapsed_seconds:.3f} s
RTF: {rtf:.3f}
"""
logging.info(info)
filename = f"{uuid.uuid4()}.wav"
sf.write(filename, audio.samples, samplerate=audio.sample_rate, subtype="PCM_16")
return filename
# Interface layout
demo = gr.Blocks()
with demo:
gr.Markdown("# Text to Voice")
gr.Markdown("High Fidelity TTS. Visit ruslanmv.com for more information.")
language_choices = list(language_to_models.keys())
language_radio = gr.Radio(label="Language", choices=language_choices, value=language_choices[0])
model_dropdown = gr.Dropdown(label="Select a model", choices=language_to_models[language_choices[0]])
language_radio.change(update_model_dropdown, inputs=language_radio, outputs=model_dropdown)
input_text = gr.Textbox(lines=10, label="Enter text to convert to speech")
input_sid = gr.Textbox(label="Speaker ID", value="0", placeholder="Valid only for multi-speaker model")
input_speed = gr.Slider(minimum=0.1, maximum=10, value=1, step=0.1, label="Speed (larger->faster; smaller->slower)")
output_audio = gr.Audio(label="Generated audio")
#output_info = gr.HTML(label="Info")
input_button = gr.Button("Submit")
input_button.click(process, inputs=[language_radio, model_dropdown, input_text, input_sid, input_speed], outputs=[output_audio])
# Download necessary data
def download_espeak_ng_data():
os.system(
"""
cd /tmp
wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2
tar xf espeak-ng-data.tar.bz2
"""
)
if __name__ == "__main__":
download_espeak_ng_data()
logging.basicConfig(level=logging.INFO)
demo.launch()