File size: 12,385 Bytes
e3a1176
 
4baa143
e3a1176
 
 
 
 
 
 
 
4baa143
 
e3a1176
 
 
 
 
 
4baa143
 
 
 
 
 
 
e3a1176
 
 
 
0d9018c
e3a1176
 
 
 
 
 
 
4baa143
e3a1176
 
 
 
 
 
 
 
 
 
 
 
 
4baa143
 
 
 
 
 
 
 
 
e3a1176
 
 
 
 
 
 
 
 
 
 
4baa143
e3a1176
 
4baa143
e3a1176
 
 
 
 
 
 
 
 
 
4baa143
 
 
 
 
e3a1176
4baa143
e3a1176
 
4baa143
e3a1176
4baa143
 
 
 
 
 
 
 
e3a1176
4baa143
 
 
 
e3a1176
 
 
 
 
 
 
 
 
 
 
 
 
4baa143
 
 
 
e3a1176
 
 
 
 
 
 
 
 
 
 
 
4baa143
 
 
e3a1176
 
 
4baa143
 
 
e3a1176
 
 
 
 
 
4baa143
e3a1176
4baa143
 
 
 
 
 
 
 
0d9018c
4baa143
 
 
 
 
 
e3a1176
 
4baa143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a1176
 
 
4baa143
 
 
 
 
 
 
 
 
 
 
 
e3a1176
 
 
4baa143
 
e3a1176
 
 
 
 
 
 
4baa143
 
 
 
 
 
e3a1176
 
 
 
4baa143
 
 
e3a1176
 
 
 
4baa143
 
 
 
 
 
 
e3a1176
4baa143
e3a1176
 
 
 
4baa143
 
 
 
e3a1176
 
4baa143
 
e3a1176
 
4baa143
 
e3a1176
4baa143
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a1176
4baa143
 
 
 
 
 
e3a1176
4baa143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import gradio as gr
import bittensor as bt
from typing import Dict, List, Any, Optional, Tuple
from bittensor.extrinsics.serving import get_metadata
from dataclasses import dataclass
import requests
import wandb
import math
import os
import datetime
import time
import json
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler

load_dotenv()

FONT = (
    """<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
)
TITLE = """<h1 align="center" id="space-title" class="typewriter">Subnet 9 Leaderboard</h1>"""
# IMAGE = """<a href="https://discord.gg/jqVphNsB4H" target="_blank"><img src="https://i.ibb.co/88wyVQ7/nousgirl.png" alt="nousgirl" style="margin: auto; width: 20%; border: 0;" /></a>"""
HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/RaoFoundation/pretraining" target="_blank">Subnet 9</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that rewards miners for producing pretrained Foundation-Models on the <a href="https://huggingface.co/datasets/tiiuae/falcon-refinedweb" target="_blank">Falcon Refined Web dataset</a>. It acts like a continuous benchmark whereby miners are rewarded for attaining the best losses on randomly sampled pages of Falcon.<br/>The models with the best head-to-head loss on the evaluation data receive a steady emission of TAO.</h3>"""
EVALUATION_DETAILS = """<ul><li><b>Name:</b> the πŸ€— Hugging Face model name (click to go to the model card)</li><li><b>Rewards / Day:</b> the expected rewards per day based on current ranking.</li><li><b>Last Average Loss:</b> the last loss value on the evaluation data for the model as calculated by a validator (lower is better)</li><li><b>UID:</b> the Bittensor UID of the miner</li><li><b>Block:</b> the Bittensor block that the model was submitted in</li></ul><br/>More stats on <a href="https://taostats.io/subnets/netuid-9/" target="_blank">taostats</a>."""
EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by the Opentensor validator</h3>"""
VALIDATOR_WANDB_PROJECT = "opentensor-dev/pretraining-subnet"
H4_TOKEN = os.environ.get("H4_TOKEN", None)
API = HfApi(token=H4_TOKEN)
WANDB_TOKEN = os.environ.get("WANDB_API_KEY", None)
REPO_ID = "RusticLuftig/9-leaderboard"
MAX_AVG_LOSS_POINTS = 1
RETRIES = 5
DELAY_SECS = 3
NETUID = 9
SECONDS_PER_BLOCK = 12


@dataclass
class ModelData:
    uid: int
    hotkey: str
    namespace: str
    name: str
    commit: str
    hash: str
    block: int
    incentive: float
    emission: float

    @classmethod
    def from_compressed_str(
        cls,
        uid: int,
        hotkey: str,
        cs: str,
        block: int,
        incentive: float,
        emission: float,
    ):
        """Returns an instance of this class from a compressed string representation"""
        tokens = cs.split(":")
        return ModelData(
            uid=uid,
            hotkey=hotkey,
            namespace=tokens[0],
            name=tokens[1],
            commit=tokens[2] if tokens[2] != "None" else None,
            hash=tokens[3] if tokens[3] != "None" else None,
            block=block,
            incentive=incentive,
            emission=emission,
        )


def run_with_retries(func, *args, **kwargs):
    for i in range(0, RETRIES):
        try:
            return func(*args, **kwargs)
        except:
            if i == RETRIES - 1:
                raise
            time.sleep(DELAY_SECS)
    raise RuntimeError("Should never happen")


def get_subtensor_and_metagraph() -> Tuple[bt.subtensor, bt.metagraph]:
    def _internal() -> Tuple[bt.subtensor, bt.metagraph]:
        subtensor = bt.subtensor("finney")
        metagraph = bt.metagraph(NETUID, lite=False)
        return subtensor, metagraph

    return run_with_retries(_internal)


def get_tao_price() -> float:
    return run_with_retries(
        lambda: float(
            requests.get(
                "https://api.kucoin.com/api/v1/market/stats?symbol=TAO-USDT"
            ).json()["data"]["last"]
        )
    )


def get_validator_weights(
    metagraph: bt.metagraph,
) -> Dict[int, Tuple[float, int, Dict[int, float]]]:
    """Returns a dictionary of validator UIDs to (vtrust, stake, {uid: weight})."""
    ret = {}
    for uid in metagraph.uids.tolist():
        vtrust = metagraph.validator_trust[uid].item()
        if vtrust > 0:
            ret[uid] = (vtrust, metagraph.S[uid].item(), {})
            for ouid in metagraph.uids.tolist():
                if ouid == uid:
                    continue
                weight = round(metagraph.weights[uid][ouid].item(), 4)
                if weight > 0:
                    ret[uid][-1][ouid] = weight
    return ret


def get_subnet_data(
    subtensor: bt.subtensor, metagraph: bt.metagraph
) -> List[ModelData]:
    result = []
    for uid in metagraph.uids.tolist():
        hotkey = metagraph.hotkeys[uid]
        metadata = get_metadata(subtensor, metagraph.netuid, hotkey)
        if not metadata:
            continue

        commitment = metadata["info"]["fields"][0]
        hex_data = commitment[list(commitment.keys())[0]][2:]
        chain_str = bytes.fromhex(hex_data).decode()
        block = metadata["block"]
        incentive = metagraph.incentive[uid].nan_to_num().item()
        emission = (
            metagraph.emission[uid].nan_to_num().item() * 20
        )  # convert to daily TAO

        model_data = None
        try:
            model_data = ModelData.from_compressed_str(
                uid, hotkey, chain_str, block, incentive, emission
            )
        except:
            continue

        result.append(model_data)
    return result


def is_floatable(x) -> bool:
    return (
        isinstance(x, float) and not math.isnan(x) and not math.isinf(x)
    ) or isinstance(x, int)


def get_scores(
    uids: List[int],
) -> Dict[int, Dict[str, Optional[float]]]:
    api = wandb.Api(api_key=WANDB_TOKEN)
    runs = list(
        api.runs(
            VALIDATOR_WANDB_PROJECT,
            filters={"config.type": "validator", "config.uid": 238},
        )
    )

    result = {}
    previous_timestamp = None
    # Iterate through the runs until we've processed all the uids.
    for i, run in enumerate(runs):
        if not "original_format_json" in run.summary:
            continue
        data = json.loads(run.summary["original_format_json"])
        all_uid_data = data["uid_data"]
        timestamp = data["timestamp"]

        # Make sure runs are indeed in descending time order.
        assert (
            previous_timestamp is None or timestamp < previous_timestamp
        ), f"Timestamps are not in descending order: {timestamp} >= {previous_timestamp}"
        previous_timestamp = timestamp

        for uid in uids:
            if uid in result:
                continue
            if str(uid) in all_uid_data:
                uid_data = all_uid_data[str(uid)]
                # Only the most recent run is fresh.
                is_fresh = i == 0
                result[uid] = {
                    "avg_loss": uid_data.get("average_loss", None),
                    "win_rate": uid_data.get("win_rate", None),
                    "win_total": uid_data.get("win_total", None),
                    "weight": uid_data.get("weight", None),
                    "fresh": is_fresh,
                }
        if len(result) == len(uids):
            break
    return result


def format_score(uid: int, scores, key) -> Optional[float]:
    if uid in scores:
        if key in scores[uid]:
            point = scores[uid][key]
            if is_floatable(point):
                return round(scores[uid][key], 4)
    return None


def next_epoch(subtensor: bt.subtensor, block: int) -> int:
    return subtensor.get_subnet_hyperparameters(
        NETUID
    ).tempo - subtensor.blocks_since_epoch(NETUID, block)


def get_next_update_div(current_block: int, next_update_block: int) -> str:
    now = datetime.datetime.now()
    blocks_to_go = next_update_block - current_block
    next_update_time = now + datetime.timedelta(
        seconds=blocks_to_go * SECONDS_PER_BLOCK
    )
    delta = next_update_time - now
    return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>"""


def leaderboard_data(
    leaderboard: List[ModelData],
    scores: Dict[int, Dict[str, Optional[float]]],
    show_stale: bool,
) -> List[List[Any]]:
    """Returns the leaderboard data, based on models data and UID scores."""
    return [
        [
            f"[{c.namespace}/{c.name} ({c.commit[0:8]})](https://huggingface.co/{c.namespace}/{c.name}/commit/{c.commit})",
            format_score(c.uid, scores, "win_rate"),
            format_score(c.uid, scores, "avg_loss"),
            format_score(c.uid, scores, "weight"),
            c.uid,
            c.block,
        ]
        for c in leaderboard
        if (c.uid in scores and scores[c.uid]["fresh"]) or show_stale
    ]

def restart_space():
    API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)


def main():
    subtensor, metagraph = get_subtensor_and_metagraph()

    tao_price = get_tao_price()

    model_data: List[ModelData] = get_subnet_data(subtensor, metagraph)
    model_data.sort(key=lambda x: x.incentive, reverse=True)

    scores = get_scores([x.uid for x in model_data])

    current_block = metagraph.block.item()
    next_epoch_block = next_epoch(subtensor, current_block)

    validator_df = get_validator_weights(metagraph)
    weight_keys = set()
    for uid, stats in validator_df.items():
        weight_keys.update(stats[-1].keys())

    demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
    with demo:
        gr.HTML(FONT)
        gr.HTML(TITLE)
        # gr.HTML(IMAGE)
        gr.HTML(HEADER)

        gr.HTML(value=get_next_update_div(current_block, next_epoch_block))

        gr.Label(
            value={
                f"{c.namespace}/{c.name} ({c.commit[0:8]}) Β· ${round(c.emission * tao_price, 2):,} (Ο„{round(c.emission, 2):,})": c.incentive
                for c in model_data
                if c.incentive
            },
            num_top_classes=10,
        )

        with gr.Accordion("Evaluation Stats"):
            gr.HTML(EVALUATION_HEADER)
            show_stale = gr.Checkbox(label="Show Stale", interactive=True)
            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_data(model_data, scores, show_stale.value),
                headers=["Name", "Win Rate", "Average Loss", "Weight", "UID", "Block"],
                datatype=["markdown", "number", "number", "number", "number", "number"],
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )
            gr.HTML(EVALUATION_DETAILS)
            show_stale.change(lambda stale: leaderboard_data(model_data, scores, stale), inputs=[show_stale], outputs=leaderboard_table)

        with gr.Accordion("Validator Stats"):
            gr.components.Dataframe(
                value=[
                    [uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)]
                    + [validator_df[uid][-1].get(c.uid) for c in model_data if c.incentive]
                    for uid, _ in sorted(
                        zip(
                            validator_df.keys(),
                            [validator_df[x][1] for x in validator_df.keys()],
                        ),
                        key=lambda x: x[1],
                        reverse=True,
                    )
                ],
                headers=["UID", "Stake (Ο„)", "V-Trust"]
                + [
                    f"{c.namespace}/{c.name} ({c.commit[0:8]})"
                    for c in model_data
                    if c.incentive
                ],
                datatype=["number", "number", "number"]
                + ["number" for c in model_data if c.incentive],
                interactive=False,
                visible=True,
            )


    scheduler = BackgroundScheduler()
    scheduler.add_job(
        restart_space, "interval", seconds=60 * 15
    )  # restart every 15 minutes
    scheduler.start()

    demo.launch()
    
main()