File size: 5,293 Bytes
f46c4d5
a8d2b76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, pipeline
from threading import Thread

model_id = "rasyosef/Llama-3.2-180M-Amharic-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

llama_am = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id
  )

# Function that accepts a prompt and generates text using the phi2 pipeline
def generate(message, chat_history, max_new_tokens=64):

  history = []

  for sent, received in chat_history:
    history.append({"role": "user", "content": sent})
    history.append({"role": "assistant", "content": received})

  history.append({"role": "user", "content": message})
  #print(history)

  if len(tokenizer.apply_chat_template(history)) > 512:
    yield "chat history is too long"
  else:
    # Streamer
    streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0)
    thread = Thread(target=llama_am,
                    kwargs={
                        "text_inputs":history,
                        "max_new_tokens":max_new_tokens,
                        "repetition_penalty":1.15,
                        "streamer":streamer
                        }
                    )
    thread.start()

    generated_text = ""
    for word in streamer:
      generated_text += word
      response = generated_text.strip()

      yield response

# Chat interface with gradio
with gr.Blocks() as demo:
  gr.Markdown("""
  # Llama 3.2 180M Amharic Chatbot Demo

  This chatbot was created using [Llama-3.2-180M-Amharic-Instruct](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic-Instruct), a finetuned version of my 180 million parameter [Llama 3.2 180M Amharic](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic) transformer model.
  """)

  tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.")

  chatbot = gr.ChatInterface(
    chatbot=gr.Chatbot(height=400),
    fn=generate,
    additional_inputs=[tokens_slider],
    stop_btn=None,
    cache_examples=False,
    examples=[
        ["แˆฐแˆ‹แˆแฃ แŠฅแŠ•แ‹ดแ‰ต แŠแˆ…?"],
        ["แ‹จแŠขแ‰ตแ‹ฎแŒตแ‹ซ แ‹‹แŠ“ แŠจแ‰ฐแˆ› แˆตแˆ แˆแŠ•แ‹ตแŠ• แŠแ‹?"],
        ["แ‹จแŠขแ‰ตแ‹ฎแŒตแ‹ซ แ‹จแˆ˜แŒจแˆจแˆปแ‹ แŠ•แŒ‰แˆต แˆ›แŠ• แŠแ‰ แˆฉ?"],
        ["แ‹จแŠ แˆ›แˆญแŠ› แŒแŒฅแˆ แƒแแˆแŠ"],
        ["แ‰ฐแˆจแ‰ต แŠ•แŒˆแˆจแŠ\n\nแŒ…แ‰ฅแŠ“ แŠ แŠ•แ‰ แˆณ"],
        ["แŠ แŠ•แ‹ต แŠ แˆตแ‰‚แŠ แ‰€แˆแ‹ต แŠ•แŒˆแˆจแŠ"],
        ["แ‹จแ‰ฐแˆฐแŒ แ‹ แŒฝแˆ‘แ แŠ แˆตแ‰ฐแ‹ซแ‹จแ‰ต แˆแŠ• แŠ แ‹ญแŠแ‰ต แŠแ‹? 'แŠ แ‹ŽแŠ•แ‰ณแ‹Š'แฃ 'แŠ แˆ‰แ‰ณแ‹Š' แ‹ˆแ‹ญแˆ 'แŒˆแˆˆแˆแ‰ฐแŠ›' แ‹จแˆšแˆ แˆแˆ‹แˆฝ แˆตแŒฅแข 'แŠ แˆชแ แŠแˆแˆ แŠแ‰ แˆญ'"],
        ["แ‹จแˆแˆจแŠ•แˆณแ‹ญ แ‹‹แŠ“ แŠจแ‰ฐแˆ› แˆตแˆ แˆแŠ•แ‹ตแŠ• แŠแ‹?"],
        ["แŠ แˆแŠ• แ‹จแŠ แˆœแˆชแŠซ แ•แˆฌแ‹šแ‹ณแŠ•แ‰ต แˆ›แŠ• แŠแ‹?"],
        ["แˆถแˆตแ‰ต แ‹จแŠ แแˆชแŠซ แˆ€แŒˆแˆซแ‰ต แŒฅแ‰€แˆตแˆแŠ"],
        ["3 แ‹จแŠ แˆœแˆชแŠซ แˆ˜แˆชแ‹Žแ‰ฝแŠ• แˆตแˆ แŒฅแ‰€แˆต"],
        ["5 แ‹จแŠ แˆœแˆชแŠซ แŠจแ‰ฐแˆ›แ‹Žแ‰ฝแŠ• แŒฅแ‰€แˆต"],
        ["แŠ แˆแˆตแ‰ต แ‹จแŠ แ‹แˆฎแ“ แˆ€แŒˆแˆฎแ‰ฝแŠ• แŒฅแ‰€แˆตแˆแŠ"],
        ["แ‰  แ‹“แˆˆแˆ แˆ‹แ‹ญ แ‹ซแˆ‰แ‰ตแŠ• 7 แŠ แˆ…แŒ‰แˆซแ‰ต แŠ•แŒˆแˆจแŠ"]
      ]
  )

demo.queue().launch(debug=True,share=True)
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response


# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()