InternVL2_5-2B / app.py
developer0hye's picture
Create app.py
7bf3214 verified
raw
history blame
11.6 kB
import gradio as gr
import spaces
import torch
import os
import uuid
import io
import numpy as np
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from decord import VideoReader, cpu
# =============================================================================
# InternVL ์ „์ฒ˜๋ฆฌ/๋กœ๋”ฉ ์ฝ”๋“œ (์›๋ณธ ์˜ˆ์‹œ์—์„œ ๋ฐœ์ทŒ)
# =============================================================================
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
# ์ด๋ฏธ์ง€ ๋ฉด์  ๊ธฐ์ค€์œผ๋กœ ์ข€ ๋” ํฐ ์ชฝ ์„ ํƒ
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(img) for img in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=8):
"""
InternVL ์˜ˆ์‹œ ์ฝ”๋“œ ์ฐธ๊ณ : ์—ฌ๋Ÿฌ ํ”„๋ ˆ์ž„์„ ์ถ”์ถœํ•˜์—ฌ dynamic_preprocess ์ ์šฉ.
์—ฌ๊ธฐ์„œ๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ num_segments=8๋กœ ์„ค์ •.
"""
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
frame = vr[frame_index]
img = Image.fromarray(frame.asnumpy()).convert('RGB')
processed_imgs = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
tile_values = [transform(tile) for tile in processed_imgs]
tile_values = torch.stack(tile_values)
num_patches_list.append(tile_values.shape[0])
pixel_values_list.append(tile_values)
# ์—ฌ๋Ÿฌ ํ”„๋ ˆ์ž„์„ ์ด์–ด ๋ถ™์—ฌ ์ตœ์ข… pixel_values ์ƒ์„ฑ
pixel_values = torch.cat(pixel_values_list, dim=0) # (sum(num_patches_list), 3, H, W)
return pixel_values, num_patches_list
# =============================================================================
# InternVL ๋ชจ๋ธ ๋กœ๋”ฉ
# =============================================================================
MODEL_ID = "OpenGVLab/InternVL2_5-2B"
model = AutoModel.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
trust_remote_code=True,
use_fast=False
)
# Gradio ์ƒ๋‹จ์— ํ‘œ์‹œํ•  ์„ค๋ช… ๋ฌธ๊ตฌ
DESCRIPTION = "[InternVL Demo](https://github.com/OpenGVLab/InternVL) - Using the 2.5B Model"
image_extensions = Image.registered_extensions()
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
def identify_and_save_blob(blob_path):
"""
Qwen ์˜ˆ์ œ ์ฝ”๋“œ์™€ ๋™์ผ: blob์„ ์—ด์–ด๋ณด๊ณ  ์ด๋ฏธ์ง€์ธ์ง€ ์˜์ƒ์ธ์ง€ ํ™•์ธ ํ›„,
์ž„์‹œ ํŒŒ์ผ๋กœ ์ €์žฅํ•˜์—ฌ ๊ฒฝ๋กœ ๋ฆฌํ„ด
"""
try:
with open(blob_path, 'rb') as file:
blob_content = file.read()
# Try to identify if it's an image
try:
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
extension = ".png" # Default to PNG for saving
media_type = "image"
except (IOError, SyntaxError):
# If it's not a valid image, assume it's a video
extension = ".mp4" # Default to MP4 for saving
media_type = "video"
# Create a unique filename
filename = f"temp_{uuid.uuid4()}_media{extension}"
with open(filename, "wb") as f:
f.write(blob_content)
return filename, media_type
except FileNotFoundError:
raise ValueError(f"The file {blob_path} was not found.")
except Exception as e:
raise ValueError(f"An error occurred while processing the file: {e}")
def process_file_upload(file_path):
"""
ํŒŒ์ผ ์—…๋กœ๋“œ ์‹œ ์ด๋ฏธ์ง€/์˜์ƒ ๋ฏธ๋ฆฌ๋ณด๊ธฐ ํ˜น์€ ๊ทธ๋Œ€๋กœ ํŒจ์Šค.
"""
if isinstance(file_path, str):
if file_path.endswith(tuple([i for i, f in image_extensions.items()])):
# ์ด๋ฏธ์ง€๋ฅผ ์—ด์–ด์„œ preview๋กœ ๋„˜๊น€
return file_path, Image.open(file_path)
elif file_path.endswith(video_extensions):
# ์˜์ƒ์€ preview๋ฅผ None์œผ๋กœ
return file_path, None
else:
# blob ํŒŒ์ผ์ธ ๊ฒฝ์šฐ ์ฒ˜๋ฆฌ
try:
media_path, media_type = identify_and_save_blob(file_path)
if media_type == "image":
return media_path, Image.open(media_path)
return media_path, None
except Exception as e:
print(e)
raise ValueError("Unsupported media type. Please upload an image or video.")
return None, None
@spaces.GPU
def internvl_inference(media_input, text_input=None):
"""
Qwen ์˜ˆ์ œ์˜ qwen_inference ๋Œ€์‹  InternVL์„ ์ด์šฉํ•œ ์ถ”๋ก  ํ•จ์ˆ˜.
- ์ด๋ฏธ์ง€/์˜์ƒ ํŒŒ์ผ์„ InternVL์—์„œ ์š”๊ตฌํ•˜๋Š” pixel_values๋กœ ๋ณ€ํ™˜ ํ›„
model.chat() ํ˜ธ์ถœํ•˜์—ฌ ๋‹ต๋ณ€ ์ƒ์„ฑ.
"""
if isinstance(media_input, str): # If it's a filepath
media_path = media_input
# ๋ฏธ๋””์–ด ์ข…๋ฅ˜ ์‹๋ณ„
if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
media_type = "image"
elif media_path.endswith(video_extensions):
media_type = "video"
else:
# blob์ธ์ง€ ์ฒดํฌ
try:
media_path, media_type = identify_and_save_blob(media_input)
except Exception as e:
print(e)
raise ValueError("Unsupported media type. Please upload an image or video.")
else:
return "No media input found"
# ์ด๋ฏธ์ง€ vs ์˜์ƒ ์ฒ˜๋ฆฌ
if media_type == "image":
# ๋‹จ์ผ ์ด๋ฏธ์ง€๋งŒ ์ฒ˜๋ฆฌํ•œ๋‹ค๊ณ  ๊ฐ€์ • (๋ฉ€ํ‹ฐ-์ด๋ฏธ์ง€๋„ ํ™•์žฅ ๊ฐ€๋Šฅ)
pixel_values = load_image(media_path, max_num=12)
pixel_values = pixel_values.to(torch.bfloat16).cuda() # (N, 3, H, W)
# InternVL ๋Œ€ํ™”
question = f"<image>\n{text_input}" if text_input else "<image>\n"
generation_config = dict(max_new_tokens=1024, do_sample=True)
response = model.chat(
tokenizer,
pixel_values,
question,
generation_config
)
return response
elif media_type == "video":
# ์˜์ƒ: ์˜ˆ์‹œ๋กœ ์ฒซ 8ํ”„๋ ˆ์ž„์— ๋Œ€ํ•ด ์ฒ˜๋ฆฌ
pixel_values, num_patches_list = load_video(
media_path,
num_segments=8,
max_num=1
)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
question_prefix = "".join([f"Frame{i+1}: <image>\n" for i in range(len(num_patches_list))])
question = question_prefix + (text_input if text_input else "")
generation_config = dict(max_new_tokens=1024, do_sample=True)
# ์˜์ƒ์—์„œ๋„ ๋™์ผํ•œ chat() ํ•จ์ˆ˜ ์‚ฌ์šฉ
response = model.chat(
tokenizer,
pixel_values,
question,
generation_config,
num_patches_list=num_patches_list
)
return response
return "Unsupported media type"
# ๊ฐ„๋‹จํ•œ CSS
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
# Gradio ๋ฐ๋ชจ ๊ตฌ์„ฑ
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Image/Video Input"):
with gr.Row():
with gr.Column():
input_media = gr.File(
label="Upload Image or Video", type="filepath"
)
preview_image = gr.Image(label="Preview", visible=True)
text_input = gr.Textbox(label="Question")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
input_media.change(
fn=process_file_upload,
inputs=[input_media],
outputs=[input_media, preview_image]
)
submit_btn.click(
internvl_inference,
[input_media, text_input],
[output_text]
)
demo.launch(debug=True)