off-topic-images / off_topic.py
rxavier's picture
Update off_topic.py
7251dce
raw
history blame
7.62 kB
import re
import time
import asyncio
from io import BytesIO
from typing import List, Optional
import httpx
import matplotlib.pyplot as plt
import numpy as np
import torch
import PIL
import imagehash
from transformers import CLIPModel, CLIPProcessor
from PIL import Image
class OffTopicDetector:
def __init__(self, model_id: str, device: Optional[str] = None, image_size: str = "E"):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.processor = CLIPProcessor.from_pretrained(model_id)
self.model = CLIPModel.from_pretrained(model_id).to(self.device)
self.image_size = image_size
def predict_probas(self, images: List[PIL.Image.Image], domain: str,
valid_templates: Optional[List[str]] = None,
invalid_classes: Optional[List[str]] = None,
autocast: bool = True):
if valid_templates:
valid_classes = [template.format(domain) for template in valid_templates]
else:
valid_classes = [f"a photo of {domain}", f"brochure with {domain} image", f"instructions for {domain}", f"{domain} diagram"]
if not invalid_classes:
invalid_classes = ["promotional ad with store information", "promotional text", "google maps screenshot", "business card", "qr code"]
n_valid = len(valid_classes)
classes = valid_classes + invalid_classes
print(f"Valid classes: {valid_classes}", f"Invalid classes: {invalid_classes}", sep="\n")
n_classes = len(classes)
if self.device == "cuda":
torch.cuda.synchronize()
start = time.time()
inputs = self.processor(text=classes, images=images, return_tensors="pt", padding=True).to(self.device)
if self.device == "cpu" and autocast is True:
autocast = False
with torch.autocast(self.device, enabled=autocast):
with torch.no_grad():
outputs = self.model(**inputs)
probas = outputs.logits_per_image.softmax(dim=1).cpu().numpy() # we can take the softmax to get the label probabilities
if self.device == "cuda":
torch.cuda.synchronize()
end = time.time()
duration = end - start
print(f"Model time: {round(duration, 2)} s",
f"Model time per image: {round(duration/len(images) * 1000, 0)} ms",
sep="\n")
valid_probas = probas[:, 0:n_valid].sum(axis=1, keepdims=True)
invalid_probas = probas[:, n_valid:n_classes].sum(axis=1, keepdims=True)
return probas, valid_probas, invalid_probas
def predict_probas_url(self, img_urls: List[str], domain: str,
valid_templates: Optional[List[str]] = None,
invalid_classes: Optional[List[str]] = None,
autocast: bool = True):
images = self.get_images(img_urls)
dedup_images = self._filter_dups(images)
return self.predict_probas(images, domain, valid_templates, invalid_classes, autocast)
def predict_probas_item(self, url_or_id: str,
valid_templates: Optional[List[str]] = None,
invalid_classes: Optional[List[str]] = None):
images, domain = self.get_item_data(url_or_id)
probas, valid_probas, invalid_probas = self.predict_probas(images, domain, valid_templates,
invalid_classes)
return images, domain, probas, valid_probas, invalid_probas
def apply_threshold(self, valid_probas: np.ndarray, threshold: float = 0.4):
return valid_probas >= threshold
def get_item_data(self, url_or_id: str):
if url_or_id.startswith("http"):
item_id = "".join(url_or_id.split("/")[3].split("-")[:2])
else:
item_id = re.sub("-", "", url_or_id)
start = time.time()
response = httpx.get(f"https://api.mercadolibre.com/items/{item_id}").json()
domain = re.sub("_", " ", response["domain_id"].split("-")[-1]).lower()
img_urls = [x["url"] for x in response["pictures"]]
img_urls = [x.replace("-O.jpg", f"-{self.image_size}.jpg") for x in img_urls]
end = time.time()
duration = end - start
print(f"Items API time: {round(duration * 1000, 0)} ms")
images = self.get_images(img_urls)
dedup_images = self._filter_dups(images)
return dedup_images, domain
def _filter_dups(self, images: List):
if len(images) > 1:
hashes = {}
for img in images:
hashes.update({str(imagehash.average_hash(img)): img})
dedup_hashes = list(dict.fromkeys(hashes))
dedup_images = [img for hash, img in hashes.items() if hash in dedup_hashes]
else:
dedup_images = images
if (diff := len(images) - len(dedup_images)) > 0:
print(f"Filtered {diff} images out of {len(images)} due to matching hashes.")
return dedup_images
def get_images(self, urls: List[str]):
start = time.time()
images = asyncio.run(self._gather_download_tasks(urls))
end = time.time()
duration = end - start
print(f"Download time: {round(duration, 2)} s",
f"Download time per image: {round(duration/len(urls) * 1000, 0)} ms",
sep="\n")
return asyncio.run(self._gather_download_tasks(urls))
async def _gather_download_tasks(self, urls: List[str]):
async def _process_download(url: str, client: httpx.AsyncClient):
response = await client.get(url)
return Image.open(BytesIO(response.content))
async with httpx.AsyncClient() as client:
tasks = [_process_download(url, client) for url in urls]
return await asyncio.gather(*tasks)
@staticmethod
def _non_async_get_item_data(url_or_id: str, save_images: bool = False):
if url_or_id.startswith("http"):
item_id = "".join(url_or_id.split("/")[3].split("-")[:2])
else:
item_id = re.sub("-", "", url_or_id)
response = httpx.get(f"https://api.mercadolibre.com/items/{item_id}").json()
domain = re.sub("_", " ", response["domain_id"].split("-")[-1]).lower()
img_urls = [x["url"] for x in response["pictures"]]
images = []
for img_url in img_urls:
img = httpx.get(img_url)
images.append(Image.open(BytesIO(img.content)))
if save_images:
with open(re.sub("D_NQ_NP_", "", img_url.split("/")[-1]) , "wb") as f:
f.write(img.content)
return images, domain
def show(self, images: List[PIL.Image.Image], valid_probas: np.ndarray, n_cols: int = 3,
title: Optional[str] = None, threshold: Optional[float] = None):
if threshold is not None:
prediction = self.apply_threshold(valid_probas, threshold)
title_scores = [f"Valid: {pred.squeeze()}" for pred in prediction]
else:
prediction = np.round(valid_probas[:, 0], 2)
title_scores = [f"Valid: {pred:.2f}" for pred in prediction]
n_images = len(images)
n_rows = int(np.ceil(n_images / n_cols))
fig, axes = plt.subplots(n_rows, n_cols, figsize=(16, 16))
for i, ax in enumerate(axes.ravel()):
ax.axis("off")
try:
ax.imshow(images[i])
ax.set_title(title_scores[i])
except IndexError:
continue
if title:
fig.suptitle(title)
fig.tight_layout()
return