rxavier's picture
Create app.py
fe51ab9
raw
history blame
1.05 kB
import gradio as gr
from . import OffTopicDetector
detector = OffTopicDetector("openai/clip-vit-base-patch32")
def validate(item_id: str, threshold: float):
images, domain, probas, valid_probas, invalid_probas = detector.predict_item_probas(item_id)
valid_images = [x for i, x in enumerate(images) if valid_probas[i].squeeze() >= threshold]
invalid_images = [x for i, x in enumerate(images) if valid_probas[i].squeeze() < threshold]
return valid_images, invalid_images
with gr.Blocks() as demo:
with gr.Tabs():
with gr.Tab("From Item ID"):
item_id = gr.Textbox(label="Item ID")
threshold = gr.Number(label="Threshold", value=0.5)
submit = gr.Button("Submit")
valid = gr.Gallery(label="Valid images").style(grid=[1, 2, 3], height="auto")
invalid = gr.Gallery(label="Invalid images").style(grid=[1, 2, 3], height="auto")
submit.click(inputs=[item_id, threshold], outputs=[valid, invalid], fn=validate)
demo.launch()