Spaces:
Runtime error
Runtime error
File size: 14,288 Bytes
ee0cae7 0d3a066 ee0cae7 d3a50f6 dbf8f9d e7f40b6 dbf8f9d 971e64d e7f40b6 971e64d eb1df9f 54beb65 ee0cae7 f7512c4 0671f1e ee0cae7 e7f40b6 7b2aaba ee0cae7 f7512c4 94fab67 eb1df9f e7f40b6 94fab67 ee0cae7 971e64d 54beb65 971e64d ee0cae7 741aba6 ee0cae7 46228a6 ee0cae7 e7f40b6 eb1df9f 2d9d672 e7f40b6 bf143f5 e7f40b6 dbf8f9d 4150f63 eb1df9f e7f40b6 4150f63 dbf8f9d fbb03a4 0d38b2c fbb03a4 0d38b2c fbb03a4 0671f1e 0d38b2c 54beb65 0d38b2c fbb03a4 0d38b2c fbb03a4 0671f1e 0d38b2c fbb03a4 28af614 9f201d4 28af614 0671f1e fbb03a4 0d38b2c 1d12944 9f201d4 0d38b2c 7b2aaba 0d38b2c e7f40b6 0671f1e bf143f5 fbb03a4 0671f1e fbb03a4 bf143f5 fbb03a4 1d12944 fbb03a4 28af614 fbb03a4 bf143f5 6218a98 2e7f326 0671f1e ee0cae7 29b65ac ee0cae7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import gradio as gr
from datasets import load_dataset
import random
import numpy as np
from transformers import CLIPProcessor, CLIPModel
from os import environ
import clip
import pickle
import requests
import torch
import os
from huggingface_hub import hf_hub_download
from torch import nn
import torch.nn.functional as nnf
import sys
from typing import Tuple, List, Union, Optional
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
N = type(None)
V = np.array
ARRAY = np.ndarray
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
VS = Union[Tuple[V, ...], List[V]]
VN = Union[V, N]
VNS = Union[VS, N]
T = torch.Tensor
TS = Union[Tuple[T, ...], List[T]]
TN = Optional[T]
TNS = Union[Tuple[TN, ...], List[TN]]
TSN = Optional[TS]
TA = Union[T, ARRAY]
D = torch.device
CPU = torch.device('cpu')
device = "cuda" if torch.cuda.is_available() else "cpu"
# # Load the pre-trained model and processor
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
clip_model = clip_model.to(device)
#orig_clip_model, orig_clip_processor = clip.load("ViT-B/32", device=device, jit=False)
# Load the Unsplash dataset
dataset = load_dataset("jamescalam/unsplash-25k-photos", split="train") # all 25K images are in train split
dataset_size = len(dataset)
# Load gpt and modifed weights for captions
gpt = GPT2LMHeadModel.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
conceptual_weight = hf_hub_download(repo_id="akhaliq/CLIP-prefix-captioning-conceptual-weights", filename="conceptual_weights.pt")
coco_weight = hf_hub_download(repo_id="akhaliq/CLIP-prefix-captioning-COCO-weights", filename="coco_weights.pt")
height = 256 # height for resizing images
def predict(image, labels):
with torch.no_grad():
inputs = clip_processor(text=[f"a photo of {c}" for c in labels], images=image, return_tensors="pt", padding=True).to(device)
outputs = clip_model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1).cpu().numpy() # we can take the softmax to get the label probabilities
return {k: float(v) for k, v in zip(labels, probs[0])}
# def predict2(image, labels):
# image = orig_clip_processor(image).unsqueeze(0).to(device)
# text = clip.tokenize(labels).to(device)
# with torch.no_grad():
# image_features = orig_clip_model.encode_image(image)
# text_features = orig_clip_model.encode_text(text)
# logits_per_image, logits_per_text = orig_clip_model(image, text)
# probs = logits_per_image.softmax(dim=-1).cpu().numpy()
# return {k: float(v) for k, v in zip(labels, probs[0])}
def rand_image():
n = dataset.num_rows
r = random.randrange(0,n)
return dataset[r]["photo_image_url"] + f"?h={height}" # Unsplash allows dynamic requests, including size of image
def set_labels(text):
return text.split(",")
# get_caption = gr.load("ryaalbr/caption", src="spaces", hf_token=environ["api_key"])
# def generate_text(image, model_name):
# return get_caption(image, model_name)
class MLP(nn.Module):
def forward(self, x: T) -> T:
return self.model(x)
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
super(MLP, self).__init__()
layers = []
for i in range(len(sizes) -1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
class ClipCaptionModel(nn.Module):
def get_dummy_token(self, batch_size: int, device: D) -> T:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None):
embedding_text = self.gpt.transformer.wte(tokens)
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
if labels is not None:
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
labels = torch.cat((dummy_token, tokens), dim=1)
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
return out
def __init__(self, prefix_length: int, prefix_size: int = 512):
super(ClipCaptionModel, self).__init__()
self.prefix_length = prefix_length
self.gpt = gpt
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
if prefix_length > 10: # not enough memory
self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length)
else:
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length))
#clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
def get_caption(img,model_name):
prefix_length = 10
model = ClipCaptionModel(prefix_length)
if model_name == "COCO":
model_path = coco_weight
else:
model_path = conceptual_weight
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model = model.eval()
model = model.to(device)
input = clip_processor(images=img, return_tensors="pt").to(device)
with torch.no_grad():
prefix = clip_model.get_image_features(**input)
# image = preprocess(img).unsqueeze(0).to(device)
# with torch.no_grad():
# prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
output = model.gpt.generate(inputs_embeds=prefix_embed,
num_beams=1,
do_sample=False,
num_return_sequences=1,
no_repeat_ngram_size=1,
max_new_tokens = 67,
pad_token_id = tokenizer.eos_token_id,
eos_token_id = tokenizer.encode('.')[0],
renormalize_logits = True)
generated_text_prefix = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text_prefix[:-1] if generated_text_prefix[-1] == "." else generated_text_prefix #remove period at end if present
# get_images = gr.load("ryaalbr/ImageSearch", src="spaces", hf_token=environ["api_key"])
# def search_images(text):
# return get_images(text, api_name="images")
emb_filename = 'unsplash-25k-photos-embeddings-indexes.pkl'
with open(emb_filename, 'rb') as emb:
id2url, img_names, img_emb = pickle.load(emb)
def search(search_query):
with torch.no_grad():
# Encode and normalize the description using CLIP (HF CLIP)
inputs = clip_processor(text=search_query, images=None, return_tensors="pt", padding=True).to(device)
text_encoded = clip_model.get_text_features(**inputs)
# # Encode and normalize the description using CLIP (original CLIP)
# text_encoded = orig_clip_model.encode_text(clip.tokenize(search_query))
# text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
# Retrieve the description vector
text_features = text_encoded.cpu().numpy()
# Compute the similarity between the descrption and each photo using the Cosine similarity
similarities = (text_features @ img_emb.T).squeeze(0)
# Sort the photos by their similarity score
best_photos = similarities.argsort()[::-1]
best_photos = best_photos[:15]
#best_photos = sorted(zip(similarities, range(img_emb.shape[0])), key=lambda x: x[0], reverse=True)
best_photo_ids = img_names[best_photos]
imgs = []
# Iterate over the top 5 results
for id in best_photo_ids:
id, _ = id.split('.')
url = id2url.get(id, "")
if url == "": continue
img = url + "?h=512"
# r = requests.get(url + "?w=512", stream=True)
# img = Image.open(r.raw)
#credits = f'Photo by <a href="https://unsplash.com/@{photo["photographer_username"]}?utm_source=NaturalLanguageImageSearch&utm_medium=referral">{photo["photographer_first_name"]} {photo["photographer_last_name"]}</a> on <a href="https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral">Unsplash</a>'
imgs.append(img)
#display(HTML(f'Photo by <a href="https://unsplash.com/@{photo["photographer_username"]}?utm_source=NaturalLanguageImageSearch&utm_medium=referral">{photo["photographer_first_name"]} {photo["photographer_last_name"]}</a> on <a href="https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral">Unsplash</a>'))
if len(imgs) == 5: break
return imgs
with gr.Blocks() as demo:
with gr.Tab("Classification"):
labels = gr.State([]) # creates hidden component that can store a value and can be used as input/output; here, initial value is an empty list
instructions = """## Instructions:
1. Enter list of labels separated by commas (or select one of the examples below)
2. Click **Get Random Image** to grab a random image from dataset
3. Click **Classify Image** to analyze current image against the labels (including after changing labels)
"""
gr.Markdown(instructions)
with gr.Row(variant="compact"):
label_text = gr.Textbox(show_label=False, placeholder="Enter classification labels").style(container=False)
#submit_btn = gr.Button("Submit").style(full_width=False)
gr.Examples(["spring, summer, fall, winter",
"mountain, city, beach, ocean, desert, forest, valley",
"red, blue, green, white, black, purple, brown",
"person, animal, landscape, something else",
"day, night, dawn, dusk"], inputs=label_text)
with gr.Row():
with gr.Column(variant="panel"):
im = gr.Image(interactive=False).style(height=height)
with gr.Row():
get_btn = gr.Button("Get Random Image").style(full_width=False)
class_btn = gr.Button("Classify Image").style(full_width=False)
cf = gr.Label()
#submit_btn.click(fn=set_labels, inputs=label_text)
label_text.change(fn=set_labels, inputs=label_text, outputs=labels) # parse list if changed
label_text.blur(fn=set_labels, inputs=label_text, outputs=labels) # parse list if focus is moved elsewhere; ensures that list is fully parsed before classification
label_text.submit(fn=set_labels, inputs=label_text, outputs=labels) # parse list if user hits enter; ensures that list is fully parsed before classification
get_btn.click(fn=rand_image, outputs=im)
#im.change(predict, inputs=[im, labels], outputs=cf)
class_btn.click(predict, inputs=[im, labels], outputs=cf)
gr.HTML(f"Dataset: <a href='https://github.com/unsplash/datasets' target='_blank'>Unsplash Lite</a>; Number of Images: {dataset_size}")
with gr.Tab("Captioning"):
instructions = """## Instructions:
1. Click **Get Random Image** to grab a random image from dataset
1. Click **Create Caption** to generate a caption for the image (usually takes 5-10s but could be over 60s)
1. Different models can be selected:
* **COCO** generally produces more straight-forward captions, but it is a smaller dataset and therefore struggles to recognize certain objects
* **Conceptual Captions** is a much larger dataset but sometimes produces results that resemble social media posts rather than captions
"""
gr.Markdown(instructions)
with gr.Row():
with gr.Column(variant="panel"):
im_cap = gr.Image(interactive=False).style(height=height)
model_name = gr.Radio(choices=["COCO","Conceptual Captions"], type="value", value="COCO", label="Model").style(container=True, item_container = False)
with gr.Row():
get_btn_cap = gr.Button("Get Random Image").style(full_width=False)
caption_btn = gr.Button("Create Caption").style(full_width=False)
caption = gr.Textbox(label='Caption', elem_classes="caption-text")
get_btn_cap.click(fn=rand_image, outputs=im_cap)
#im_cap.change(generate_text, inputs=im_cap, outputs=caption)
caption_btn.click(get_caption, inputs=[im_cap, model_name], outputs=caption)
gr.HTML(f"Dataset: <a href='https://github.com/unsplash/datasets' target='_blank'>Unsplash Lite</a>; Number of Images: {dataset_size}")
with gr.Tab("Search"):
instructions = """## Instructions:
1. Enter a search query (or select one of the examples below)
2. Click **Find Images** to find images that match the query (top 5 are shown in order from left to right)
3. Keep in mind that the dataset contains mostly nature-focused images"""
gr.Markdown(instructions)
with gr.Column(variant="panel"):
desc = gr.Textbox(show_label=False, placeholder="Enter description").style(container=False)
gr.Examples(["someone holding flowers",
"someone holding pink flowers",
"red fruit in a person's hands",
"an aerial view of forest",
"a waterfall in Iceland with a rainbow"
], inputs=desc)
search_btn = gr.Button("Find Images").style(full_width=False)
gallery = gr.Gallery(show_label=False).style(grid=(2,2,3,5))
search_btn.click(search,inputs=desc, outputs=gallery, postprocess=False)
gr.HTML(f"Dataset: <a href='https://github.com/unsplash/datasets' target='_blank'>Unsplash Lite</a>; Number of Images: {dataset_size}")
demo.queue(concurrency_count=3)
demo.launch() |