ryaalbr commited on
Commit
d486d0b
·
1 Parent(s): 94fab67

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -121,7 +121,7 @@ with gr.Blocks() as demo:
121
  1. Enter list of labels separated by commas (or select one of the examples below)
122
  2. Click **Get Random Image** to grab a random image from dataset
123
  3. Click **Classify Image** to analyze current image against the labels (including after changing labels)
124
- 4. The dataset (<a href="https://github.com/unsplash/datasets" target="_blank">Unsplash Lite</a>) contains 25,000 nature-focused images."""
125
  gr.Markdown(instructions)
126
  with gr.Row(variant="compact"):
127
  label_text = gr.Textbox(show_label=False, placeholder="Enter classification labels").style(container=False)
@@ -150,8 +150,8 @@ with gr.Blocks() as demo:
150
  instructions = """## Instructions:
151
  1. Click **Get Random Image** to grab a random image from dataset
152
  1. Click **Create Caption** to generate a caption for the image
153
- 1. Different models can be selected: *COCO* generally produces more straight-forward captions, but it is a smaller dataset and therefore struggles to recognize certain objects; **Conceptual Captions** is a much larger dataset but often generally overly...um...poetic results
154
- 1. The dataset (<a href="https://github.com/unsplash/datasets" target="_blank">Unsplash Lite</a>) contains 25,000 nature-focused images."""
155
  gr.Markdown(instructions)
156
  with gr.Row():
157
  with gr.Column(variant="panel"):
@@ -169,7 +169,7 @@ with gr.Blocks() as demo:
169
  instructions = """## Instructions:
170
  1. Enter a search query (or select one of the examples below)
171
  2. Click **Find Images** to find images that match the query (top 5 are shown in order from left to right)
172
- 3. The dataset (<a href="https://github.com/unsplash/datasets" target="_blank">Unsplash Lite</a>) contains 25,000 nature-focused images."""
173
  gr.Markdown(instructions)
174
  with gr.Column(variant="panel"):
175
  desc = gr.Textbox(show_label=False, placeholder="Enter description").style(container=False)
 
121
  1. Enter list of labels separated by commas (or select one of the examples below)
122
  2. Click **Get Random Image** to grab a random image from dataset
123
  3. Click **Classify Image** to analyze current image against the labels (including after changing labels)
124
+ 4. The dataset (<a href="https://github.com/unsplash/datasets" target="_blank">Unsplash Lite</a>) contains 25,000 nature-focused images"""
125
  gr.Markdown(instructions)
126
  with gr.Row(variant="compact"):
127
  label_text = gr.Textbox(show_label=False, placeholder="Enter classification labels").style(container=False)
 
150
  instructions = """## Instructions:
151
  1. Click **Get Random Image** to grab a random image from dataset
152
  1. Click **Create Caption** to generate a caption for the image
153
+ 1. Different models can be selected: *COCO* generally produces more straight-forward captions, but it is a smaller dataset and therefore struggles to recognize certain objects; **Conceptual Captions** is a much larger dataset but sometimes produces overly...um...poetic results
154
+ 1. The dataset (<a href="https://github.com/unsplash/datasets" target="_blank">Unsplash Lite</a>) contains 25,000 nature-focused images"""
155
  gr.Markdown(instructions)
156
  with gr.Row():
157
  with gr.Column(variant="panel"):
 
169
  instructions = """## Instructions:
170
  1. Enter a search query (or select one of the examples below)
171
  2. Click **Find Images** to find images that match the query (top 5 are shown in order from left to right)
172
+ 3. The dataset (<a href="https://github.com/unsplash/datasets" target="_blank">Unsplash Lite</a>) contains 25,000 nature-focused images"""
173
  gr.Markdown(instructions)
174
  with gr.Column(variant="panel"):
175
  desc = gr.Textbox(show_label=False, placeholder="Enter description").style(container=False)