Spaces:
Build error
Build error
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Retrieve the Hugging Face token from environment variables | |
hf_token = os.environ.get("HF_TOKEN") | |
if not hf_token: | |
st.error("Hugging Face token not found. Please add your HF_TOKEN to the Space secrets.") | |
st.stop() | |
# Load models and tokenizers | |
def load_model_and_tokenizer(model_name): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
return model, tokenizer | |
model_8b, tokenizer_8b = load_model_and_tokenizer("meta-llama/Meta-Llama-3.1-8B") | |
model_8b_instruct, tokenizer_8b_instruct = load_model_and_tokenizer("meta-llama/Meta-Llama-3.1-8B-Instruct") | |
def generate_text(model, tokenizer, prompt, max_length=100): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.title("LLaMA-3.1-8B vs LLaMA-3.1-8B-Instruct Comparison") | |
prompt = st.text_area("Enter your prompt:", height=100) | |
max_length = st.slider("Max output length:", min_value=50, max_value=500, value=100) | |
if st.button("Generate"): | |
if prompt: | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("LLaMA-3.1-8B Output") | |
output_8b = generate_text(model_8b, tokenizer_8b, prompt, max_length) | |
st.write(output_8b) | |
with col2: | |
st.subheader("LLaMA-3.1-8B-Instruct Output") | |
output_8b_instruct = generate_text(model_8b_instruct, tokenizer_8b_instruct, prompt, max_length) | |
st.write(output_8b_instruct) | |
else: | |
st.warning("Please enter a prompt.") |