Spaces:
Sleeping
Sleeping
Commit
·
37ca0d6
1
Parent(s):
8159d29
OpenCV Face Recognition model using DeepFace
Browse files- FaceRecognition.py +92 -0
FaceRecognition.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from deepface import DeepFace
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import streamlit as st
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
windowsHolder = st.empty()
|
8 |
+
value = st.empty()
|
9 |
+
|
10 |
+
def main():
|
11 |
+
cap = cv2.VideoCapture(0)
|
12 |
+
while True:
|
13 |
+
time.sleep(0.5)
|
14 |
+
_, img = cap.read()
|
15 |
+
|
16 |
+
if img is None:
|
17 |
+
break
|
18 |
+
|
19 |
+
#cv2.imshow("Window", img)
|
20 |
+
windowsHolder.image(img, channels="BGR")
|
21 |
+
extract_faces(img)
|
22 |
+
if cv2.waitKey(1) & 0xFF == ord("q"):
|
23 |
+
break
|
24 |
+
cap.release()
|
25 |
+
cv2.destroyAllWindows()
|
26 |
+
|
27 |
+
return
|
28 |
+
|
29 |
+
|
30 |
+
def extract_faces(raw_img):
|
31 |
+
test = DeepFace.extract_faces(raw_img, detector_backend="mtcnn", align=True)
|
32 |
+
|
33 |
+
if test:
|
34 |
+
faces = []
|
35 |
+
|
36 |
+
for face_obj in test:
|
37 |
+
facial_area = face_obj["facial_area"]
|
38 |
+
faces.append(
|
39 |
+
(
|
40 |
+
facial_area["x"],
|
41 |
+
facial_area["y"],
|
42 |
+
facial_area["w"],
|
43 |
+
facial_area["h"],
|
44 |
+
)
|
45 |
+
)
|
46 |
+
|
47 |
+
detected_faces = []
|
48 |
+
for x, y, w, h in faces:
|
49 |
+
detected_face = raw_img[int(y) : int(y + h), int(x) : int(x + w)]
|
50 |
+
detected_faces.append(detected_face)
|
51 |
+
recognition(detected_face)
|
52 |
+
print("Face detected")
|
53 |
+
time.sleep(0.6)
|
54 |
+
return
|
55 |
+
|
56 |
+
|
57 |
+
def recognition(img):
|
58 |
+
print("Starting recognition")
|
59 |
+
dfs = DeepFace.find(
|
60 |
+
img_path=img,
|
61 |
+
db_path="/Users/futuregadgetlab/Desktop/DB",
|
62 |
+
detector_backend="mtcnn",
|
63 |
+
model_name="VGG-Face",
|
64 |
+
distance_metric="euclidean_l2",
|
65 |
+
enforce_detection=False,
|
66 |
+
)
|
67 |
+
|
68 |
+
found_non_empty_df = False
|
69 |
+
|
70 |
+
for df in dfs:
|
71 |
+
if len(df) != 0:
|
72 |
+
for _, row in df.iterrows():
|
73 |
+
if row["VGG-Face_euclidean_l2"] < 0.6:
|
74 |
+
print("Matched!")
|
75 |
+
with value.container():
|
76 |
+
st.write("Matched! Welcome to expo 2023")
|
77 |
+
st.balloons()
|
78 |
+
found_non_empty_df = True
|
79 |
+
break
|
80 |
+
|
81 |
+
if found_non_empty_df:
|
82 |
+
break # Exit the outer loop if a match is found in any DataFrame
|
83 |
+
|
84 |
+
if not found_non_empty_df:
|
85 |
+
print("SIke")
|
86 |
+
with value.container():
|
87 |
+
st.warning("You don't exist, my friend!")
|
88 |
+
time.sleep(1)
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
main()
|