File size: 6,477 Bytes
c5ca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
from multiprocessing import Pool
import pdb
import numpy as np
import nltk
nltk.download('punkt')

from nltk.translate.bleu_score import SmoothingFunction

try: 
    from multiprocessing import cpu_count
except: 
    from os import cpu_count

class Metrics(object):
    def __init__(self):
        self.name = 'Metric'

    def get_name(self):
        return self.name

    def set_name(self, name):
        self.name = name

    def get_score(self):
        pass


class Bleu(Metrics):
    def __init__(self, test_text='', real_text='', gram=3, num_real_sentences=500, num_fake_sentences=10000):
        super(Bleu, self).__init__()
        self.name = 'Bleu'
        self.test_data = test_text
        self.real_data = real_text
        self.gram = gram
        self.sample_size = num_real_sentences
        self.reference = None
        self.is_first = True
        self.num_sentences = num_fake_sentences


    def get_name(self):
        return self.name

    def get_score(self, is_fast=True, ignore=False):
        if ignore:
            return 0
        if self.is_first:
            self.get_reference()
            self.is_first = False
        if is_fast:
            return self.get_bleu_fast()
        return self.get_bleu_parallel()

    # fetch REAL DATA
    def get_reference(self):
        if self.reference is None:
            reference = list()
            with open(self.real_data) as real_data:
                for text in real_data:
                    text = nltk.word_tokenize(text)
                    reference.append(text)
            self.reference = reference
            return reference
        else:
            return self.reference

    def get_bleu(self):
        raise Exception('make sure you call BLEU paralell')
        ngram = self.gram
        bleu = list()
        reference = self.get_reference()
        weight = tuple((1. / ngram for _ in range(ngram)))
        with open(self.test_data) as test_data:
            for hypothesis in test_data:
                hypothesis = nltk.word_tokenize(hypothesis)
                bleu.append(nltk.translate.bleu_score.sentence_bleu(reference, hypothesis, weight,
                                                                    smoothing_function=SmoothingFunction().method1))
        return sum(bleu) / len(bleu)

    def calc_bleu(self, reference, hypothesis, weight):
        return nltk.translate.bleu_score.sentence_bleu(reference, hypothesis, weight,
                                                       smoothing_function=SmoothingFunction().method1)

    def get_bleu_fast(self):
        reference = self.get_reference()
        reference = reference[0:self.sample_size]
        return self.get_bleu_parallel(reference=reference)

    def get_bleu_parallel(self, reference=None):
        ngram = self.gram
        if reference is None:
            reference = self.get_reference()
        weight = tuple((1. / ngram for _ in range(ngram)))
        pool = Pool(cpu_count())
        result = list()
        maxx = self.num_sentences
        with open(self.test_data) as test_data:
            for i, hypothesis in enumerate(test_data):
                #print('i : {}'.format(i))
                hypothesis = nltk.word_tokenize(hypothesis)
                result.append(pool.apply_async(self.calc_bleu, args=(reference, hypothesis, weight)))
                if i > maxx : break
        score = 0.0
        cnt = 0
        for it, i in enumerate(result):
            #print('i : {}'.format(it))
            score += i.get()
            cnt += 1
        pool.close()
        pool.join()
        return score / cnt




class SelfBleu(Metrics):
    def __init__(self, test_text='', gram=3, model_path='', num_sentences=500):
        super(SelfBleu, self).__init__()
        self.name = 'Self-Bleu'
        self.test_data = test_text
        self.gram = gram
        self.sample_size = num_sentences
        self.reference = None
        self.is_first = True


    def get_name(self):
        return self.name

    def get_score(self, is_fast=True, ignore=False):
        if ignore:
            return 0
        if self.is_first:
            self.get_reference()
            self.is_first = False
        if is_fast:
            return self.get_bleu_fast()
        return self.get_bleu_parallel()

    def get_reference(self):
        if self.reference is None:
            reference = list()
            with open(self.test_data) as real_data:
                for text in real_data:
                    text = nltk.word_tokenize(text)
                    reference.append(text)
            self.reference = reference
            return reference
        else:
            return self.reference

    def get_bleu(self):
        ngram = self.gram
        bleu = list()
        reference = self.get_reference()
        weight = tuple((1. / ngram for _ in range(ngram)))
        with open(self.test_data) as test_data:
            for hypothesis in test_data:
                hypothesis = nltk.word_tokenize(hypothesis)
                bleu.append(nltk.translate.bleu_score.sentence_bleu(reference, hypothesis, weight,
                                                                    smoothing_function=SmoothingFunction().method1))
        return sum(bleu) / len(bleu)

    def calc_bleu(self, reference, hypothesis, weight):
        return nltk.translate.bleu_score.sentence_bleu(reference, hypothesis, weight,
                                                       smoothing_function=SmoothingFunction().method1)

    def get_bleu_fast(self):
        reference = self.get_reference()
        # random.shuffle(reference)
        reference = reference[0:self.sample_size]
        return self.get_bleu_parallel(reference=reference)

    def get_bleu_parallel(self, reference=None):
        ngram = self.gram
        if reference is None:
            reference = self.get_reference()
        weight = tuple((1. / ngram for _ in range(ngram)))
        pool = Pool(cpu_count())
        result = list()
        sentence_num = len(reference)
        for index in range(sentence_num):
            #genious:
            hypothesis = reference[index]
            other = reference[:index] + reference[index+1:]
            result.append(pool.apply_async(self.calc_bleu, args=(other, hypothesis, weight)))

        score = 0.0
        cnt = 0
        for i in result:
            score += i.get()
            cnt += 1
        pool.close()
        pool.join()
        return score / cnt